Ireland has voted to be the world's first country to fully divest public money from fossil fuels.

The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states.

Large accumulations of rainfall over a precipitation event can impact human infrastructure. Unlike precipitation intensity distributions, probability distributions for accumulations at first drop slowly with increasing size. At a certain size—the cutoff scale—the behavior regime changes, and the probabilities drop rapidly. In current climate, every region is protected from excessively large accumulations by this cutoff scale, and human activities are adapted to this.

Power stations, ships and air traffic are among the most potent greenhouse gas emitters and are primarily responsible for global warming. Iron salt aerosols (ISAs), composed partly of iron and chloride, exert a cooling effect on climate in several ways. This article aims firstly to examine all direct and indirect natural climate cooling mechanisms driven by ISA tropospheric aerosol particles, showing their cooperation and interaction within the different environmental compartments.

Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin—one of Earth’s major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting.

This document explores the range of currently available and potential climate prediction products and services. It is intended for all audiences from policy makers to practitioners and users.

Models and physical reasoning predict that extreme precipitation will increase in a warmer climate due to increased atmospheric humidity. Observational tests using regression analysis have reported a puzzling variety of apparent scaling rates including strong rates in midlatitude locations but weak or negative rates in the tropics. Here we analyse daily extreme precipitation events in several Australian cities to show that temporary local cooling associated with extreme events and associated synoptic conditions reduces these apparent scaling rates, especially in warmer climatic conditions.

The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway.

The book is an addition to previous efforts by CTA to document and share proven practices, tools or policies that promote resilience and help farmers to address the challenges posed by climate change.

Mass loss from the West Antarctic ice shelves and glaciers has been linked to basal melt by ocean heat flux. The Totten Ice Shelf in East Antarctica, which buttresses a marine-based ice sheet with a volume equivalent to at least 3.5 m of global sea-level rise, also experiences rapid basal melt, but the role of ocean forcing was not known because of a lack of observations near the ice shelf. Observations from the Totten calving front confirm that (0.22 ± 0.07) × 106 m3 s−1 of warm water enters the cavity through a newly discovered deep channel.