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e Earth’s surface
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e Northern hemisphere
SNOW cover is
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Source: IPCC AR4 WG 1 Report, pp 14, 6



Radiative Forcing of Various Greenhouse Gases

Radiative forcing is the quantitative measure of the strength of different human and natural agents in causing climate change

(relative to 1750)
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* Anthropogenic radiative
forcing strength is far
greater than the natural
factors such as solar
irradiance

*As a gas, CO2 is of prime
importance

*C0O2 has complex
dynamic because it is also
linked to land and ocean
uptakes

Global average radiative forcing (RF) estimates and ranges in 2005, IPCC AR4

LOSU: Level of scientific understanding
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CO, Concentration in Ice Cores and Atmospheric CO, Projection for Next 100 Years

CO, Concentration in Ice Core Samples and
Projections for Next 100 Years
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Source: C. D. Keeling and T. P. Whorf; Etheridge et.al.; Barnola et.al.; IPCC
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Atmospheric CO, Concentration

Year 1750: 280 ppm (about) RECENT GLOBAL MONTHLY MEAN CO,
Year 2008: 385 ppm 0

386
38% above pre-industrial, over 100 ppm rise

384

382 [

1970 - 1979: 1.3 ppm y!
1980 — 1989: 1.6 ppm y!
1990 - 1999: 1.5 ppm y!
2000 - 2008: 1.9 ppm y!

PARTS PER MILLION
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378
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October 2009

376 L . . .
2005 2006 2007 2008 2009 2010
YEAR
2008 1.79
2007 2.12
2006 1.77
2005 2.41
2004 1.62
2003 2.22
Annual Mean Growth Rate 2002 2 40
2001 1.85
2000 1.24

Data Source: Pieter Tans and Thomas Conway, NOAA/ESRL



Factors that Influence the Airborne Fraction

The rate of CO, emissions.

The rate of CO, uptake and ultimately the
total amount of C that can be stored by land

and oceans:

— Land: CO, fertilization effect, soil respiration, N deposition
fertilization, forest regrowth, woody encroachment, ...

—  Oceans: CO, solublility (temperature, salinity), ocean
currents, stratification, winds, biological activity,
acidification, ...

Springer; Gruber et al. 2004, Island Press



Fossil Fuel Emissions and Cement Production ¢

[1 Pg =1 Petagram = 1 Billion metric tonnes = 1 Gigatonne = 1x10%°g]
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Le Quéré et al. 2009, Nature-geoscience; CDIAC 2009 Global emission per capita



Fossil Fuel Emissions: Actual vs. IPCC Scenarios
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Percentage of Global Annual Emissions
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Regional Shift in Emissions Share
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Fossil Fuel Emissions: Top Emitters (>4% of Total) 12
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Global Carbon Project 2009; Data: Gregg Marland, CDIAC 2009



Regional Emission Pathways (1980-2005) 13

Raupach et al 2007, PNAS
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Cumulative Fraction of Total Fossil Fuel Emissions 2008

Number of Country Cumulative
Countries Fraction
1 China 232 1] 3 countries
2 USA 419 | 50% Global Emissions
3 India 477 i
4 Russia 530
5 Japan 573 |10 countries
6 Germany 509 2/13 Global Emissions
7 Canada 617
8 UK 633
9 South Korea  .652
10 Iran .668 L
op
20 Poland 800 5004 Global Emissions
50 @o005)  Belarus 941
100 (2005) Moldova 992

210 1.00

Gregg Marland, CDIAC 2009



Balance of Emissions Embodied in Trade 2004

Warm colors = Net importers of embodied carbon
Cold colors - Net exporters of embodied carbon

Peters and Hertwich 2008, Environ, Sci & Tech., updated
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Transport of Embodied Emissions 16

CO, emissions (PgC y1)

o™ Annex B >o% 19 Annex B )
Developed Nations Developed Nations
— 4 M )

25% of growth

Developing Nations

2 Non-Annex B — 2lef Developing Nations —
Non-Annex B
| | | | | | | | | | | | | | | | | | 1 | | 1 | 1 | | 1 | | | | | | 1 | | | | | |
1990 200 2010 1990 2000 2010
carbon emissions from traded products are ~ carbon emissions from traded products are
assigned to the producers assigned to the consumers

Share of Non-Annex is smaller but rising rapidly

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience; Data: Peters & Hetwich
2009; Peters et al. 2008; Weber et al 2008; Guan et al. 2008; CDIAC 2009



Additional energy-related CO2 emissions by country and 17
region in 2030 vs 2006 (ref scenario)

China contributes 20% to global energy-related CO2 emissions in 2006
Additional global CO2 in 2030 over 2006: 12.6 GtCO2, about half from China

2006 GigaTons CO2
Total: 27.89

OECD :12.79 China
Non-OECD :14.12 India
Middle East
China : 5.65 Other Asia
India +1.25 Latin America
OECD North America
Russia
Africa
Other E. Europe/Eurasia
OECD Pacific
OECD Europe

0.1%

4.1%

3.0%
1.9%
2.1%

0.3%

1.0%
1.4%
0.9%

0.01%

3.1%

% = average annual rate of growth

(Note: this is CO2 equivalent; NOT Carbon; need to divide by 3.667 to compare

3 4 5 6 7
Gigatonnes

World Energy Outlook, 2008



Energy-related CO2 emissions in cities by region in the 18

Reference Scenario

) arission

35 -

- 80% Non-OECD cities
B OECD cities

Gigatonnes

= Share of cities in
world (right axis)

Out of 12.6 GtCO2
global CO2 addition

— T4% in next 25 years,
cities contribute 11
Gtor 87%

89% of cumulative
increase in 2006-
2030 in urban CO2
K / comes from non-
2006 K 2020 / 2030 OECD countries
_______________ (Mostly ,India and

71% | ' 76% | China)

WEOQO, 2008; Dhakal 2009



Role of urban area: Global urban population and share

19

of urban agglomeration by size

* Almost all future global
pop growth from urban
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Asia’s role in global CO2 from fossil
fuels

China over-passed USA as the greatest emitter since 2006
India surpassed Russia and now third largest emitter

China (23.2%), India (5.8%), Japan (4.3%), South Korea (1.9%) and
Iran (1.6%) are amongst top 10 global CO2 emitters: totalling
36.8% in 2008

Embodied CO2 emission in trade: China is the biggest carbon
importer; Europe, US and Japan are CO2 exporters; meaning,
Asia is a key region if we expand debate to consumption
responsibility too

Future new emission is going to happen in Asia, mostly China and
India

Future global incremental emissions will take places urban areas
with Asian developing countries playing major role



Borneo, Courtesy: Viktor Boehm

Carbon Emissions from Land Use Change 21

2000-2007 (Net av. an. emission)

Canadell et al. 2007, PNAS; FAO-Global Resources Assessment 2005

Tropical Americas, 41% 0.6 Pg C y

Tropical Asia, 43% 0.6 PgCy?

Tropical Africa, 17% 0.3PgCyt
1.5PgCy!

Tropical deforestation: 13 Million hectares each year
Tropical deforestation mostly responsible for emissions

[2007-Total Anthropogenic Emissions:8.5+1.5 = 10 Pg]

160 Pg C emission in 1850-2007 from Land Use Change



Pg Cyrt

Historical Emissions from Land Use Change

Carbon Emissions from Tropical Deforestation
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R.A. Houghton, unpublished



Net CO, Emissions from LUC in Tropical Countries

CO, emissions (tgC y?)
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2000-2005
Brazil / 60%
Indonesia
Cameroon Colombia
Venezuela .
Peru Nicaragua
Rep.Dem.Congo i
Nigeria Philippines Nepal
- AN U —_
A d ' -
4-2% 2-1% <1%

RA Houghton 2009, unpublished; Based on FAO land use change statistics




CO, emissions (PyC y?)

10

Total Anthropogenic Emissions 2008
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- Fossil fuel _

i Land use change, LUC 1.2] £
| (1] e -~ i\ 11 VA\ a
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2008 CO2 emissions from LUC has significantly decreased from previous year
Probably due to wet La Nifia conditions and reduced reforestation rate

Le Quéré et al. 2009, Nature-geoscience; Data: CDIAC, FAO, Woods Hole Research Center 2009

anthropogenic
emissions
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Asia’s role in global CO2 from land use
change

Asian contribution in increasing dramatically in global CO2
emission from the land use change

Indonesia remains key country

Despite being big countries, the CO2 from land use of China
and India are smaller unlike their fossil fuel CO2 emissions



Airborne Fraction

Fraction of total CO, emissions that remains in the atmosphere

Airborne Fraction

Emissions
1tCO,

400Kg stay

1.0

0.8

0.6

0.4

0.2

- Trend: 0.27%0.2 % y*! (p=0.9) I

EETI RS
' AI\ Al

AREAVIAAA

1960 1970 1980 1990 2000 2010

Means the efficiency of sinks in removing CO2 from atmosphere has
decreased by 5% over the last 50 years, and will continue to do so in the
future

Le Quéré et al. 2009, Nature-geoscience; Canadell et al. 2007, PNAS; Raupach et al. 2008, Biogeosciences

26

Emissions
11CO,

450Kg stay




Efficiency of Natural Sinks

27

Long term trends show that the natural sink has increased size but the efficiency of sink (to uptake the additional

Land Fraction

Land sink (Pg C yr™)
& A 0L o 9~
g ‘
Ocean sink (Pg C yr™")
o B 0N O o~
- X -

—6 Dl oo oo o by
1960 1970 1980 1990 2000 2010
Year

Gloonn o oo b adbo o o b
1960 1970 1980 1990 2000 2010
Le Quéré et al. 2009, Nature-geoscience

carbon as fraction of total anthropogenic CO2 emissions) has declined to keep airborne fraction from increasing

Net uptake

Land
3 PgClyr in 2000-8

3.6 PgC in 2006
2.9 PgC in 2007
4.7 PgC in 2008 (La Nifia)

Ocean

Slower growth of ocean
sink compared to growth
pace of emissions

2.3 PgClyr in 2000-8

Canadell et al. 2007, PNAS



Causes of the Declined in the Efficiency of the Ocean Sink 28

Credit: N.Metzl, August 2000, oceanographic cruise OISO-5

Part of the growth decline is
attributed to a 30% decrease in the
efficiency of the Southern Ocean
sink over the last 20 years.

This sink removes annually 0.7 Pg of
anthropogenic carbon.

The decline is attributed to the
strengthening of the winds around
Antarctica which enhances
ventilation of natural carbon-rich
deep waters.

The strengthening of the winds is
attributed to global warming and the
ozone hole.

Le Quéré et al. 2007, Science



Human Perturbation of the Global Carbon Budget

CO, flux (Pg C y?)

Source

Sink

2000-2008

DR r~r L A L - PgC
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e S 1.4

i - -

4 - _
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Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience
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Human Perturbation of the Global Carbon Budget

CO, flux (Pg C y?)

Sink

Source

(0))]

Time (y)

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

2000-2008

PgC

[.7

1.4
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Human Perturbation of the Global Carbon Budget

CO, flux (Pg C y?)

Sink

Source

Time (y)

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

2000-2008

PgC

[.7

1.4
4.1
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Human Perturbation of the Global Carbon Budget — *

CO, flux (Pg C y?)

Sink

Source

Time (y)

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

2000-2008

PgC

[.7

1.4
4.1

2.3 (4 models)



Human Perturbation of the Global Carbon Budget  *

CO, flux (PgC y1)

Sink

Source

Time (y)

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

2000-2008

PgC

[.7

1.4
4.1

3.0 (5 models)
2.3 (4 models)



Human Perturbation of the Global Carbon Budget >

CO, flux (PgC y1)

Sink

Source

Time (y)

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

2000-2008

PgC

[.7

1.4
4.1
3.0 (5 models)

2.3 (4 models)
0.3 Residual



Fate of Anthropogenic CO, EmISSIONS (2000-2008)

55% of emission is
taken back by sink

Le Quéré et al. 2009, Nature-geoscience; Canadell et al. 2007, PNAS, updated
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Conclusions (i)

Anthropogenic CO, emissions are growing 3.5 times faster
since 2000 than durlng the previous decade

Anthropogenic CO, emissions are growing above the worst
case emission scenario of the Intergovernmental Panel on
Climate Change (IPCC)

Developing Countries are now emitting significantly more
carbon than Developed Countries

The economic crisis will likely have a transitional impact on
the growth of CO, emissions and a undetectable effect on the
growth of atmospheric CO, (because the much larger inter-
annual variability of the natural sinks)



Conclusions (i)

e The efficiency of natural sinks has decreased by 5% over the
last 60 years (and will continue to do so in the future), a trend
not fully captured by climate models.

e implying that the longer it takes to begin reducing
emissions significantly, the larger the cuts needed to
stabilize atmospheric CO,.

e Sink-source dynamics have led to an acceleration of
atmospheric CO, growth 27% faster since 2000 than in the
previous two decades, implying a stronger climate forcing and
sooner than expected.

e Asia plays important role in both emission from the fossil fuel
and the land use changes and key region for carbon
management at carbon source and land carbon sinks
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