Global carbon budget and challenges for making low carbon society- Why Asia matters?

Shobhakar Dhakal Executive Director, Global Carbon Project

*Visiting Associate Professor, Graduate School of Environmental Studies, Nagoya University *Guest Research Scholar, International Institute for Applied Systems Analyses (IIASA), Austria

International Scientific Programs on Global Environmental Change Science

Outline

- 1. CO₂ in climate change context
- 2. CO_2 emissions from fossil fuel and cement, and drivers
- 3. CO₂ Emissions from Land Use Change
- 4. Natural CO₂ sinks
- 5. Closing the global carbon budget
- 6. Conclusion

Few climate change indicators

 Earth's surface temperature in rising

• Sea level is rising

 Northern hemisphere snow cover is declining

Source: IPCC AR4 WG 1 Report, pp 14, 6

Radiative Forcing of Various Greenhouse Gases

Radiative forcing is the quantitative measure of the strength of different human and natural agents in causing climate change (relative to 1750)

RADIATIVE FORCING COMPONENTS

• Anthropogenic radiative forcing strength is far greater than the natural factors such as solar irradiance

•As a gas, CO2 is of prime importance

•CO2 has complex dynamic because it is also linked to land and ocean uptakes

Global average radiative forcing (RF) estimates and ranges in 2005, IPCC AR4

LOSU: Level of scientific understanding

CO₂ Concentration in Ice Cores and Atmospheric CO₂ Projection for Next 100 Years

Source: C. D. Keeling and T. P. Whorf; Etheridge et.al.; Barnola et.al.; IPCC

6

Atmospheric CO₂ Concentration

Year 1750: 280 ppm (about) Year 2008: 385 ppm

38% above pre-industrial, over 100 ppm rise

1970 – 1979: 1.3 ppm y⁻¹ 1980 – 1989: 1.6 ppm y¹ 1990 – 1999: 1.5 ppm y⁻¹ 2000 - 2008: 1.9 ppm y⁻¹

7

Factors that Influence the Airborne Fraction

- 1. The rate of CO_2 emissions.
- 2. The rate of CO_2 uptake and ultimately the total amount of C that can be stored by land and oceans:
 - Land: CO₂ fertilization effect, soil respiration, N deposition fertilization, forest regrowth, woody encroachment, ...
 - Oceans: CO₂ solubility (temperature, salinity), ocean currents, stratification, winds, biological activity, acidification, …

Fossil Fuel Emissions and Cement Production ⁹

 $[1 Pg = 1 Petagram = 1 Billion metric tonnes = 1 Gigatonne = 1x10^{15}g]$

Le Quéré et al. 2009, Nature-geoscience; CDIAC 2009

Global emission per capita

Fossil Fuel Emissions: Actual vs. IPCC Scenarios

Raupach et al. 2007, PNAS, updated; Le Quéré et al. 2009, Nature-geoscience; International Monetary Fund 2009

Regional Shift in Emissions Share

Fossil Fuel Emissions: Top Emitters (>4% of Total) ¹²

Global Carbon Project 2009; Data: Gregg Marland, CDIAC 2009

Regional Emission Pathways (1980-2005)

Raupach et al 2007, PNAS

13

Cumulative Fraction of Total Fossil Fuel Emissions 2008

Number of Countries	Country	Cumulative Fraction	
1	China	.232	
2	USA	.419	50% Global Emissions
3	India	.477	
4	Russia	.530	
5	Japan	.573	10 countries
6	Germany	.599	2/3 Global Emissions
7	Canada	.617	
8	UK	.633	
9	South Korea	.652	
10	Iran	.668	
20	Poland	.800	80% Global Emissions
50 (2005)	Belarus	.941	
100 (2005)	Moldova	.992	
210	Gregg Marland, CDIAC 2009	1.00	

Balance of Emissions Embodied in Trade 2004

15

Transport of Embodied Emissions

carbon emissions from traded products are assigned to the producers

carbon emissions from traded products are assigned to the consumers

Share of Non-Annex is smaller but rising rapidly

Additional energy-related CO2 emissions by country and ¹⁷ region in 2030 vs 2006 (ref scenario)

China contributes 20% to global energy-related CO2 emissions in 2006 Additional global CO2 in 2030 over 2006: 12.6 GtCO2, about half from China

(Note: this is CO2 equivalent; NOT Carbon; need to divide by 3.667 to compare

World Energy Outlook, 2008

Energy-related CO2 emissions in cities by region in the Reference Scenario

WEO, 2008; Dhakal 2009

Role of urban area: Global urban population and share ¹⁹ of urban agglomeration by size

Asia's role in global CO2 from fossil fuels

- China over-passed USA as the greatest emitter since 2006
- India surpassed Russia and now third largest emitter
- China (23.2%), India (5.8%), Japan (4.3%), South Korea (1.9%) and Iran (1.6%) are amongst top 10 global CO2 emitters: totalling 36.8% in 2008
- Embodied CO2 emission in trade: China is the biggest carbon importer; Europe, US and Japan are CO2 exporters; meaning, Asia is a key region if we expand debate to consumption responsibility too
- Future new emission is going to happen in Asia, mostly China and India
- Future global incremental emissions will take places urban areas with Asian developing countries playing major role

Carbon Emissions from Land Use Change

2000-2007 (Net av. an. emission)

Tropical Americas, 41%	0.6 Pg C y ⁻¹
Tropical Asia, 43%	0.6 Pg C y ⁻¹
Tropical Africa, 17%	0.3 Pg C y ⁻¹
	1.5 Pg C y ^{_1}

Tropical deforestation: 13 Million hectares each year Tropical deforestation mostly responsible for emissions

[2007-Total Anthropogenic Emissions:8.5+1.5 = 10 Pg]

160 Pg C emission in 1850-2007 from Land Use Change

Historical Emissions from Land Use Change

Carbon Emissions from Tropical Deforestation

Net CO₂ Emissions from LUC in Tropical Countries ²³

RA Houghton 2009, unpublished; Based on FAO land use change statistics

Total Anthropogenic Emissions 2008

2008 CO2 emissions from LUC has significantly decreased from previous year Probably due to wet La Niña conditions and reduced reforestation rate

Le Quéré et al. 2009, Nature-geoscience; Data: CDIAC, FAO, Woods Hole Research Center 2009

Asia's role in global CO2 from land use change

- Asian contribution in increasing dramatically in global CO2 emission from the land use change
- Indonesia remains key country
- Despite being big countries, the CO2 from land use of China and India are smaller unlike their fossil fuel CO2 emissions

Airborne Fraction

Fraction of total CO₂ emissions that remains in the atmosphere

decreased by 5% over the last 50 years, and will continue to do so in the future

Efficiency of Natural Sinks

Causes of the Declined in the Efficiency of the Ocean Sink

 Part of the growth decline is attributed to a 30% decrease in the efficiency of the Southern Ocean sink over the last 20 years.

28

- This sink removes annually 0.7 Pg of anthropogenic carbon.
- The decline is attributed to the strengthening of the winds around Antarctica which enhances ventilation of natural carbon-rich deep waters.
- The strengthening of the winds is attributed to global warming and the ozone hole.

Human Perturbation of the Global Carbon Budget ²⁹

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

Human Perturbation of the Global Carbon Budget ³⁰

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

Human Perturbation of the Global Carbon Budget ³¹

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

Human Perturbation of the Global Carbon Budget ³²

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

Human Perturbation of the Global Carbon Budget ³³

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

Human Perturbation of the Global Carbon Budget ³⁴

Global Carbon Project 2009; Le Quéré et al. 2009, Nature-geoscience

Fate of Anthropogenic CO₂ Emissions (2000-2008)

Le Quéré et al. 2009, Nature-geoscience; Canadell et al. 2007, PNAS, updated

Conclusions (i)

- Anthropogenic CO₂ emissions are growing 3.5 times faster since 2000 than during the previous decade
- Anthropogenic CO₂ emissions are growing above the worst case emission scenario of the Intergovernmental Panel on Climate Change (IPCC)
- Developing Countries are now emitting significantly more carbon than Developed Countries
- The economic crisis will likely have a transitional impact on the growth of CO₂ emissions and a undetectable effect on the growth of atmospheric CO₂ (because the much larger interannual variability of the natural sinks)

Conclusions (ii)

- The efficiency of natural sinks has decreased by 5% over the last 60 years (and will continue to do so in the future), a trend not fully captured by climate models.
 - implying that the longer it takes to begin reducing emissions significantly, the larger the cuts needed to stabilize atmospheric CO₂.
- Sink-source dynamics have led to an acceleration of atmospheric CO₂ growth 27% faster since 2000 than in the previous two decades, implying a stronger climate forcing and sooner than expected.
- Asia plays important role in both emission from the fossil fuel and the land use changes and key region for carbon management at carbon source and land carbon sinks

GCP-Carbon Budget Consortium

Corinne Le Quéré

School of Environment Sciences, University of East Anglia, Norwich, UK British Antarctic Survey, Cambridge, UK

Michael R. Raupach

Global Carbon Project, CSIRO Marine and Atmospheric Research, Canberra, Australia

Josep G. Canadell

Global Carbon Project, CSIRO Marine and Atmospheric Research, Canberra, Australia

Gregg Marland

Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Laurent Bopp

Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS-UVSQ, France

Philippe Ciais

Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS-UVSQ, France

Thomas J. Conway

NOAA Earth System Research Laboratory, Boulder, Colorado, USA

Scott C. Doney

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

Richard A. Feely

Pacific Marine Environmental Laboratory, Seattle, Washington, USA

Pru Foster

QUEST, Department of Earth Sciences, University of Bristol, UK

Pierre Friedlingstein

Laboratoire des Sciences du Climat et de l'Environnement, France QUEST, Department of Earth Sciences, University of Bristol, UK

Kevin Gurney

Department of Earth and Atmospheric Sciences and Department of Agronomy, Purdue University, Indiana, USA

Richard A. Houghton

Woods Hole Research Center, Falmouth, Massachusetts, USA

Joanna I. House

QUEST, Department of Earth Sciences, University of Bristol, UK

Chris Huntingford

Centre for Ecology and Hydrology, Benson Lane, Wallingford, UK

GCP-Carbon Budget Consortium

Peter E. Levy

Centre for Ecology and Hydrology, Bush Estate, Penicuik, UK

Mark R. Lomas

Department of Animal and Plant Sciences, University of Sheffield, UK

Joseph Majkut

AOS Program, Princeton University, PO Box CN710, Princeton, New Jersey, USA

Nicolas Metzl

LOCEAN-IPSL, CNRS, Institut Pierre Simon Laplace, Université Pierre et Marie Curie, Paris, France

Jean P. Ometto

Instituto Nacional de Pesquisas Espaciais, São José dos Campos-SP, Brazil

Glen P. Peters

Center for International Climate and Environmental Research, Oslo, Norway

Colin Prentice

QUEST, Department of Earth Sciences, University of Bristol, UK

James T. Randerson

Department of Earth System Science, University of California, Irvine, California, USA

Steven W. Running

School of Forestry/Numerical Terradynamic Simulation Group, University of Montana, Missoula, USA

Jorge L. Sarmiento

Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, USA

Ute Schuster

School of Environment Sciences, University of East Anglia, Norwich, UK

Stephen Sitch

School of Geography, University of Leeds, Leeds, UK

Taro Takahashi

Lamont-Doherty Earth Observatory of Columbia University, New York, USA

Nicolas Viovy

Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, France

Guido R. van der Werf

Faculty of Earth and Life Sciences, VU University, Amsterdam 1081 HV, Netherlands

F. Ian Woodward

Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK