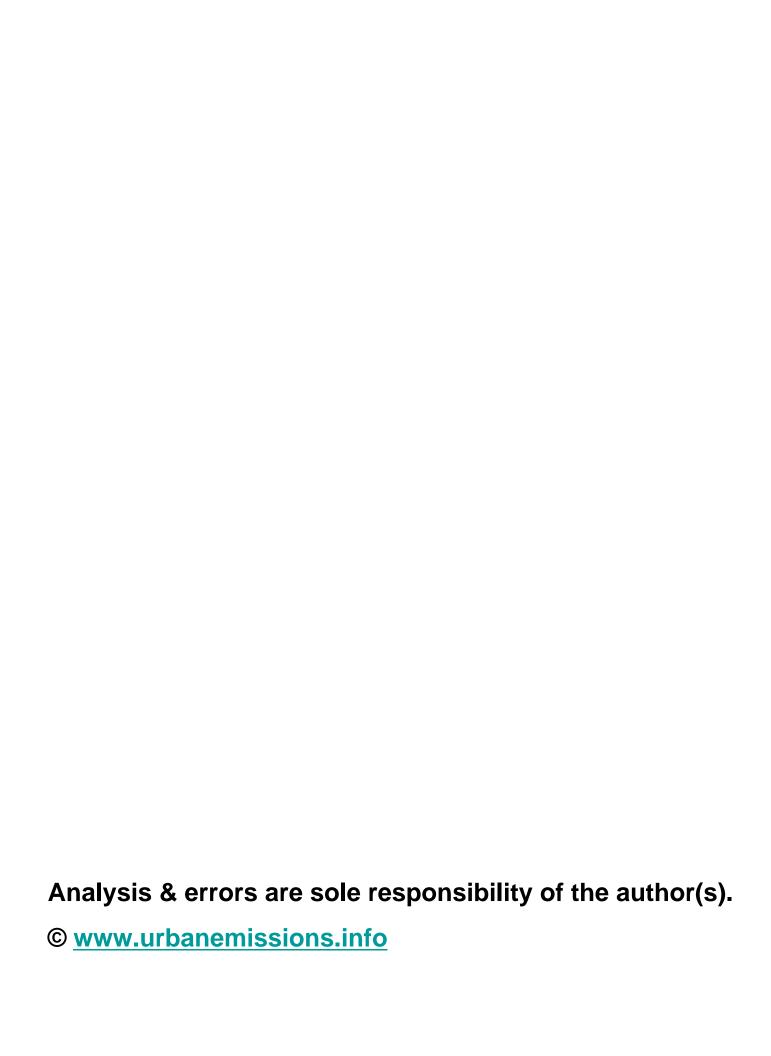

www.sim-air.org


Motorized Passenger Travel in Urban India

Emissions & Co-Benefits Analysis

Dr. Sarath Guttikunda June, 2009

SIM-air Working Paper Series: 24-2009

Motorized Passenger Travel in Urban India: Emissions & Co-Benefits Analysis

Among the many air pollution sources, the transport sector, the fastest growing contributor, is one of the main culprits (if not the primary) causing air pollution in the urban centers of the developed and developing countries. **Figure 1** presents a summary of the estimated share of transport sector to the local air pollution, based on a series of source apportionment studies in Asia. The numbers represent the direct vehicular emissions and do not include the fugitive dust from paved and unpaved roads due to the vehicular activity, which is a major part of the measured PM pollution, especially in the developing countries.

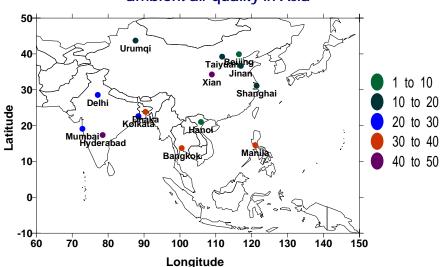


Figure 1: The share of transport emissions contributing to the measured ambient air quality in Asia¹

The cities represented in **Figure 1** are centers of economic and industrial growth in their respective countries. In Asia, besides the economic hubs, the secondary cities, with population more than 2 million are increasing², the demand for personal transport is growing in all the cities, and these cities are increasingly facing the air pollution problems, especially from the transport sector. It is important to note that the results presented are based on monitoring data (operated at limited capacity), and in reality, the exposure levels (and times) of transport related pollution is expected to be much higher³, especially when combined with the road resuspension dust.

In the transport sector, especially for the PM pollution, the diesel combustion dominates – in number and quantity, primarily from the buses and the goods vehicles. Among the

¹ SIM working paper series "SIM-10-2008: What is PM" and "SIM-16-2009: Urban Particulate Pollution Source Apportionment" and references within, @ http://urbanemissions.info/simair/simseries.html

² Demographia, 2008 @ http://www.demographia.com/

³ Science Daily, may 28th, 2009, "Reducing Gasoline Emissions Will Benefit Human Health" @ http://www.sciencedaily.com/releases/2009/05/090528135250.htm

personal transport, the gasoline is the traditional fuel, but due to subsidy programs for diesel and the emerging engine technologies, the diesel component is increasing⁴.

Scope of this Paper

This paper presents the emissions analysis of the motorized "**in-city**" passenger travel from twenty cities in India, covering the current trends in four modes of transport (passenger cars, motorcycles, 3 wheelers, and buses), estimated energy consumption for the assumed growth patterns, and possible co-benefits of three combined scenarios (public transport, policy reforms, and non-motorized transport)⁵.

Passenger Travel in India

Burgeoning urbanization in India is leading the travel demand in not only the megacities (with population more than 10 million), but also in the growing number of secondary and tertiary cities (with population more than 1-2 million)⁶.

The growing industrial conglomerations and information technology (IT) parks, under the Special Economic Zone (SEZ) schemes⁷ have led the way. For example, in the Cochin city, the SEZ covers an estimated 103 acres of land and ~79 factories manufacturing ready-made garments, rubber gloves, electronic items, software, hardware, food items and jewellery. This combined with the increasing geographic size of the cities are changing the travel patterns across the country. For example, once the satellite cities to Delhi, the NOIDA and Gurgaon have since become part of the Delhi administration, forming the National Capital Region (**Figure 2**, **top right**). On a daily basis, the travel into and out of Delhi to these cities account for nearly 30-40 percent of the passenger trips⁸. Similarly, a large number of IT parks were sanctioned in the cities of Hyderabad, Bangalore, Pune, Bhopal, and others, resulting in increase of the urban development zones and local administrative responsibilities for infrastructure.

A study of basic transport and air quality indicators was carried out by WRI/EMBARQ in 2009 @ http://www.embarq.org/en/book/export/html/427

ADB, 2006, "Energy Efficiency and Climate Change considerations for on-road transport in Asia" @ http://www.cleanairnet.org/caiasia/1412/articles-70656 finalreport.pdf

PEW Climate, May, 2001, "Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India" @ http://www.pewclimate.org/global-warming-in-depth/all_reports/transportation_in_india/

Badami, 2005, "Transport and urban air pollution in India" Environment Management @ http://www.ncbi.nlm.nih.gov/pubmed/15995891

⁶ Wall Street Journal, May 13th, 2009, "Megacities threaten to choke to India" @ http://online.wsj.com/article/SB124216531392512435.html

SEMINAR Magazine, New Delhi, India, November, 2007, "Transport and Livable Cities" @ http://www.india-seminar.com/2007/579.htm

Institute of Urban Transport (IUT) India @ http://www.iutindia.org/aboutus.html

SIM-10-2008, "The Nano Car-nomics in India" @ http://urbanemissions.info/simair/simseries.html

⁴ Global Subsidies Initiative @ http://www.globalsubsidies.org

⁵ An analysis of the "Emissions from India's Intercity and Intracity Road Transport" is presented by the Clean Air Initiative for Asian Cities (CAI-Asia). A draft report from May, 2009, is available @ http://www.cleanairnet.org/caiasia/1412/article-73353.html

⁷ India Together, 2005 @ http://www.indiatogether.org/2005/aug/eco-sezone.htm

⁸ Central Road Research Institute, Delhi, India @ http://www.crridom.gov.in

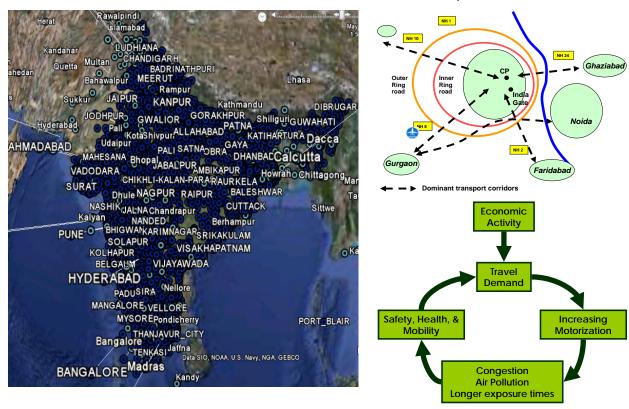


Figure 2: Growing number of mega, secondary, and tertiary cities in India⁹; Travel demand from the satellite cities in Delhi, India

The change in the geographical settings of the cities, the travel behavior and the mode of transport (transformed to motorized transport) is not only increasing the vehicle kilometers traveled per day, but also exerting pressure on the limited infrastructure, leading to traffic congestion, idling, and pollution. The rapid growth in the number of vehicles, increased fuel combustion, poor traffic management, and lack of sufficient public transport has led to deteriorating air quality, increased trip costs and substantially extended the commuting times¹⁰ resulting in longer exposure times to increasing pollution and health impacts (**Figure 2**, **bottom right**). For example, the big cities are registering ~600 to ~1000 vehicles per day, mostly dominated by the 2 wheelers and passenger cars¹¹.

⁹ Population map overlaid on Google Earth platform @ http://earth.google.com/

¹⁰ See the SIM-18-2009, "Indicative Impacts of Vehicular Idling on Air Emissions" @ http://urbanemissions.info/simair/simseries.html

¹¹ Presentation by Ms. Anumita Roychoudary for IES India Program, December, 2007 @ http://www.epa.gov/ies/india/apportionment_documents.htm

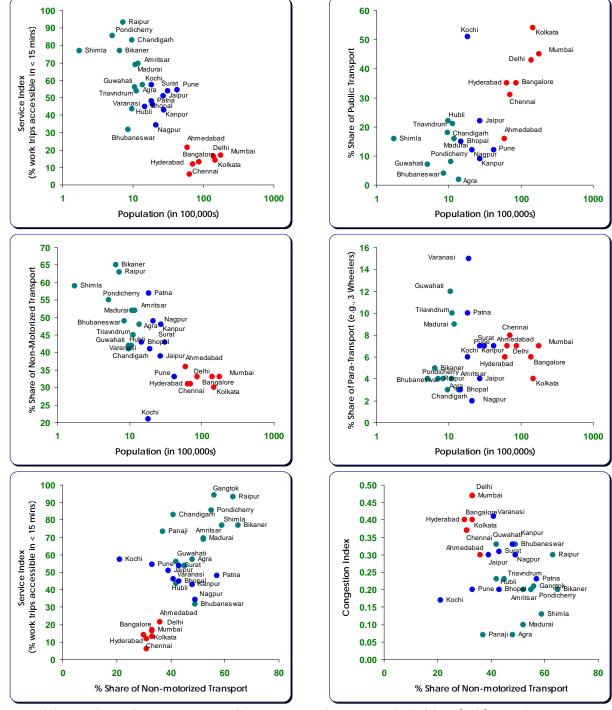


Figure 3: Travel statistics in India¹²

Color code: red = mega cities; blue = secondary cities; light blue (ash) = tertiary cities

-

¹² Data is sources from the report "Traffic and Transportation Policies and Strategies in Urban Areas in India" by Ministry of Urban Development, Government of India, May, 2008 @ http://urbanindia.nic.in/moud/theministry/ministry/furbandevelopment/main.htm

The big cities of India have at least doubled their administrative boundaries in the last decade. This, combined with increasing incomes, has been the impetus for transport demand to increase exponentially. Figure 3, top left panel, presents the relationship between the city population (on log scale) and city travel service index (defined as the percentage of work trips accessible in less than 15 minutes of travel time). The megacities (red dots) fair poorly compared to the medium size cities (blue dots) and then the tertiary cities (ash colored dots). As the cities are expanding geographically, the need for motorized (self or public) transport is becoming imminent.

Important messages in **Figure 3**:

- As the cities grew, access to the work places in less than 15 mins travel time decreases
- As the cities grew, the share of public transport in the form of buses (percent of passenger trips) increases
- As the cities grew, the share of non-motorized transport (NMT) in the form of walking and biking (percent of passenger trips) decreases
- As the cities grew, the share of para-transit remained constant
- Lower the share of non-motorized transport in the city, lower the service index (% trips accessible in less than 15 mins travel time)
- Lower the share of NMT in the city, higher the congestion index, primarily due increase in the personal transport

The access to public transport is growing, but not enough to support the travel demand growth in the big cities. Figure 3, top right panel, presents the share of passenger trips covered by the public transport against the population in the cities. The access to the public transport is high in the megacities, and expected to grow under the JNNURM funds¹³. However, the lack of infrastructure in the bus manufacturing sector to supply the necessary (currently standing at \sim 70,000 buses) is hindering the public transport promotion¹⁴.

In India, the growth rate for the motor vehicles (passenger cars and 2 wheeler motorcycles) is approximately 10 to 12 percent¹⁵. While the personal transport is growing, it is important to focus on the NMT, the walking and cycling together, which forms a major portion of the passenger trips, especially the short trips less than 1-3 km. The Figure 3, middle left panel, presents a correlation between the percent of NMT trips to the population in the cities. The statistics clearly indicate that the access to the pedestrian walking and cycling has reduced drastically, and leading up to maximizing the space for motorized transport.

http://www.downtoearth.org.in/cover.asp?foldername=20081031&filename=news&sid=45&page=1&sec_id=9&p=1

Times of India, February 8th, 2009, "BRTS dreams may go bust" @

http://timesofindia.indiatimes.com/articleshow/msid-4096144,prtpage-1.cms

The Hindu, May 13th, 2009, "Delhi Govt, faces cancellation of bus funding under JNNURM" @ http://www.hindu.com/thehindu/holnus/004200905131452.htm

http://timesofindia.indiatimes.com/Car-sales-up-420-bikes-jump-1211-in-April/articleshow/4508229.cms

¹³ Jawaharlal Nehru National Urban Renewal Mission (JNNURM) @ http://jnnurm.nic.in/

¹⁴ Down to Earth, October, 2008, "City bus: In demand, out of supply" @

Times of India, May 12th, 2009, "On growth track: Auto sales zoom 11% in April, 2009", report from SIAM – Society of Indian Automobile Manufacturer @

The **Figure 3**, **bottom left panel**, presents the correlation between city travel service index the percent share of NMT. The correlation is very strong indicating a negative effect of the urban growth on the accessibility. As the cities grow the percent of the short trips, which are dominated by the NMT mode are reduced and replaced by the motorized transport. Also, the change in the geography of the cities, presented as an example in **Figure 2**, is altering the modal shares to lesser accessibility index.

The correlation between the congestion index and the percent share of NMT trips is presented in **Figure 3**, **bottom right panel**, which clearly indicates the need for prioritizing the NMT mode for reductions in the congestion problems.

It's all about choice

By Gordon Price, Director of the City Program, Simon Fraser University, Canada http://www.pricetags.ca/

It has taken a century of building almost exclusively for the car to get us to our current dilemma. It will take some considerable time to achieve long-term solutions. Ultimately, they can only be found in the way we build our cities. We will have to establish virtuous cycles to offset the vicious ones, where success leads to more success.

There is no single solution. Top-down planning can never be comprehensive enough or flexible enough. Give people enough transportation options and they can by and large work out their own solutions. That in turn is dependent on the design and integration of land-use and transportation choices.

Ideally, people should have at least five choices - feet, bike, transit, taxi/car sharing and personal vehicle - and the ability to mix and match them appropriate to the kind of trip and the circumstances faced. The combinations and the mix make it all work.

The trip is only a few blocks? Walking is best. It's raining? Grab a taxi. The trip is around five kilometers? Cycling may be the faster alternative. Going to a town centre in the suburbs? Try transit.

Heading out of town? Train, perhaps - or car. Yes, the car is perfectly appropriate for many trips, but not all. Once the car is used less frequently, needs may be met more affordability by a car sharing or the occasional rental, with considerable savings.

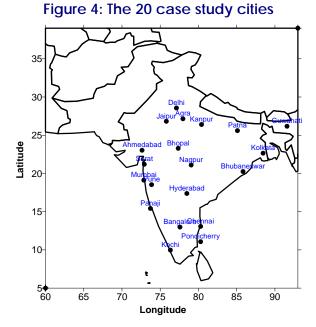
Of course, the provision of alternatives assumes a city designed around more than the car - and a citizenry comfortable with the choices. In the end, the answers are found in the plans we have to implement. Concentrate growth. Build complete communities. Provide transportation choice.

But to do so, we will first have to be aware of the impediments to success, rooted in the unrealistic beliefs and assumptions we have associated with the success of the car.

The role of para-transit mode *aka* 3 Wheelers and taxi services, cannot be ignored. The **Figure 3**, **middle right panel**, indicates that the share of taxi services is fairly constant in all the cities.

The air quality, which is closely linked to the transport sector, is deteriorating in the cities, as the share of motorized transport is increasing. This is primarily due to the direct vehicular

exhaust while driving, and during the idling and congestion periods. A secondary source of pollution, linked to the transport sector is the road dust, which contributes significantly to the ground level air pollution in most of these cities. The contribution of the road dust is enhanced during the resuspension of the dust due to constant vehicular movement and not allowing the dust to settle (which also depends on the local meteorological conditions).


Urban Transport Emissions Analysis

The emissions from the transport sector play a vital role in the air quality management in the growing cities. Traditionally, the industries are considered the gross polluters, given the energy intensity and outdated pollution control equipment, but the emissions from the transport sector are increasingly considered the largest contributor to the air pollution related health impacts. One of the main reasons is the increasing amount of time spent outdoors and the related exposure times, which enhance the health impacts of the air pollution.

Why the Transport Emissions Analysis

While the mobility and the need for access to the private or public transportation has taken precedence, the growing air pollution levels and the interlinkages to health cannot be ignored¹⁶. Even if most people thought they would be better off with more roads instead of the better facilities for public transport or pedestrian walkways, it would still lack strong

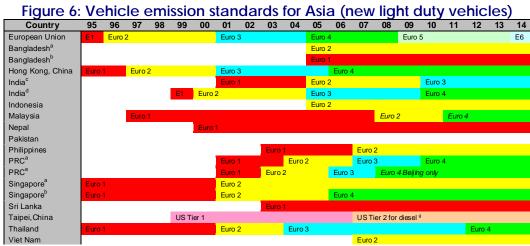
advocates, primarily because of the lack of information to support the otherwise. Before an intervention to become a policy, possible big gains need to demonstrated and analyzed for various indicators. Specifically, the benefits of the policy must exceed both the costs of the policy and the costs of mobilizing and campaigning to adopt the policy. All this requires information. The goal of this paper is to estimate the trends in twenty cities (Figure 4) for emissions from passenger travel and analyze possible interventions for benefits. The twenty cities range from megacities (e.g. Delhi and Mumbai) to secondary (e.g. Pune and Bhopal) to tertiary (e.g. Panaji and Guwahati).

¹⁶ The Health and Environment Linkages Initiative (HELI) @ http://www.who.int/heli/risks/urban/urbanenv/en/index.html

Methodology

A methodology was developed to estimate the trends in the emissions with air quality and health as the primary indicator. The fundamental equation for calculating the emissions is based on the activity level, which for the transport sector is equivalent of "Emissions = Number of Vehicles * Vehicle kilometers traveled (km)* Emission Factor(gm/km)". A detailed mathematical representation of the methodology is presented in Figure 5. The emissions analysis is carried out for four pollutants – particulates, nitrogen oxides, carbon monoxide, and carbon dioxide. All the calculations are conducted for the period of 2008-2030.

For each of the parameters, the assumptions and the resources of information are detailed in the following sections. For a given fleet, the total emissions depend on the mix of the vehicles on road, e.g., the make and the age of the vehicles. The age mix of the vehicles is considered to account for the deterioration of the vehicles, which impact the emission release levels, and to account for the average retirement of the vehicles.


Figure 5: Mathematical representation of emissions calculator

$$NV_{t+1} = NV_{t} * (1 + growth)$$
 $NV_{total} = \sum_{age=0}^{age=20} NV_{age}$
 $EF_{age} = EF_{new} * (1 + drate)^{2}$
 $EF_{effective} = \sum_{age=0}^{age=20} EF_{age} * \frac{NV_{age}}{NV_{total}}$
 $Emissions = NV_{total} * VKT * EF_{effective}$

For all the cities, an average retirement age of 10 years for the passenger cars, 15 years for the buses, 10 years for the 3 wheelers, and 8 years for the motorcycles is assumed. The average retirement age doesn't mean that all the vehicles are retired instantaneously, but a fraction of the fleet is interchanged for a newer fleet to maintain the assumed age mix. However, the methodology assumes a 20 year cap on the vehicle age.

Based on the growth rates for the four categories, the fleet is progressively calculated at a two year interval. The methodology allows for varying growth rates for each fleet by fuel mix. For example, given the subsidies for the diesel, the growth rate for the diesel passenger cars is assumed higher than the gasoline based cars. For all the cities, it is assumed that the 2-stroke motorcycles will be phased out by 2012 and replaced by 4-stroke motorcycles. The growth rate for the 2 categories is adjusted to support the phase out program.

All the emissions are calculated using the emissions standards as the starting point, which is retained for the newer fleet for each year. **Figure 6** presents a summary of the prevalent emission standards in Asia. **Table 1** presents the assumed emission standards for the calculations in this study.

Note: a – gasoline; b – diesel; c – Entire country; d – Delhi, Chennai, Mumbai, Kolkata, Bangalore, Hydrabad, Agra, Surat, Pune, Kanpur, Ahmedabad, Sholapur, Lucknow; Other cities in India are in Euro 2; e – Beijing and Guangzhou (as of 01 September 2006) have adopted Euro 3 standards; Shanghai has requested the approval of the State Council for implementation of Euro 3; f – Euro 4 for gasoline vehicles and California ULEV standards for diesel vehicles; g – Gasoline vehicles under consideration Source: Various sources, compiled by CAI-Asia @ http://www.cleanairnet.org/caiasia/

Table 1: Vehicular Emission Standards¹⁷

	Petrol	Diesel	CNG	LPG
PM _{2.5} (gm/km)				
Passenger Cars	0.05^{a}	$0.15^{\rm b}$	0.03	0.005
Buses	-	$0.34^{\rm e}$	$0.02^{\rm e}$	-
3 Wheelers	0.08^{a}	-	0.03	0.005
2 Wheelers	0.05^{a}	0.05^{a}	-	-
NOx (gm/km)				
Passenger Cars	0.2^{a}	1.2^{b}	0.7	0.7
Buses	-	$17^{ m e}$	$12.1^{\rm e}$	-
3 Wheelers	$1.5^{\rm b}$	2.0	1.0	0.5
2 Wheelers	$0.07^{\rm a}$	0.3^{a}	-	-
CO (gm/km)				
Passenger Cars	2.0^{a}	$1.0^{\rm b}$	1.0	1.0
Buses	-	$7.1^{ m e}$	$5.3^{ m e}$	-
3 Wheelers	$4.0^{\rm b}$	4.3	1.5	1.0
2 Wheelers	2.2^{a}	2.2^{a}	-	-

¹⁷ (a) http://cpcb.nic.in/Source_Apportionment_Studies.php

⁽b) http://www.dieselnet.com/standards/in/

⁽e) www.tec.org.au/index.php?option=com_docman&task=doc_download&gid=147

This study does not include the emissions analysis for SO₂, however the prevalent fuel quality standards in Asia for sulfur levels in diesel is presented in **Figure 7**.

Figure 7: Fuel standards for sulfur levels in diesel in Asia

rigure 7. ruel standards for suitur levels in dieser in Asia																
	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Bangladesh							5000									
Cambodia					2000				1500							
Hong Kong, China		500					50					10 - 1	under d	conside	eration	1
India (nationwide)	5000				2500					500					350	
India (metros)	5000				2500	500				350					50	
Indonesia	5000										2000				350	
Japan ^a	500									50		10				
Malaysia	5000		3000				500 -	marke	eted	500					50	
Pakistan	10000						5000			1000						
Philippines	5000					2000			500						50	
PRC (nationwide)	5000						2000			500 -	widely	used			50	
PRC - Beijing	5000						2000		500	350			50			
Republic of Korea	500								100			15/10				
Singapore	3000		500								50					
Sri Lanka	10000							5000	3000	/ 500	500					
Taipei,China	3000			500			350		100						50	
Thailand	2500			500					350		150				50	
Viet Nam	10000							2500			500				150	
European Union					500					50/10)		10			
United States	500										15					

Source: Various sources, compiled by CAI-Asia @ http://www.cleanairnet.org/caiasia/

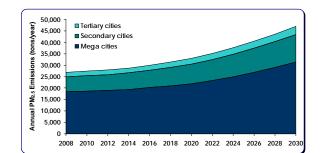
Increasing congestion in the cities is a leading cause for the "stop and go" driving patterns, combined with outdated traffic control systems and traffic management techniques, which compound the deterioration of the vehicles. For the older fleet, the emission factors are deteriorated (drate in the **Figure 5**) at an assumed rate of 2 percent per year. Similarly, the fuel consumption patterns, all the categories of the vehicles were deteriorated at the rate of 2 percent per year.

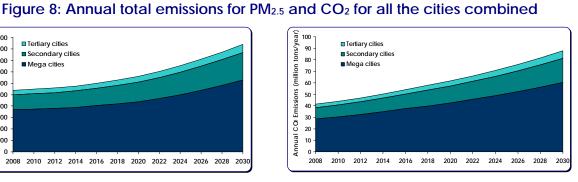
The vehicle kilometers traveled (VKT *per day*), which determine the activity level is based on local survey. In the general, for the

- 1. Public transport buses, operating on fixed or non-fixed routes, operating at an average speed of 30 km/hr for 8 hours a day, accounts for 240 km per day.
- 2. Public transport buses operating on long distance routes, travel in and out of the city, which means distance traveled in the city limits is the distance between the depots to the city limits.
- 3. Passenger vehicles, operate at 30-40 km/hr for 1-2 hours on the road. An average value of 40 km per day is assumed for the megacities and 30 km per day for the secondary and tertiary cities.
- 4. Motorcycles (2Ws) are assumed to travel at speeds higher than the other modes and for short time periods; most often for personal travel, unlike in the cities of the Bangkok, Hanoi, and Hoi Chi Minh City, where the motorcycles are effectively used as distance passenger taxi.

Results & Observations

It is important to note that the assumed numbers (theories) are for conditions observed in the developing countries (here in India), where the congestion levels are on the rise and doesn't allow the vehicles to operate at speeds observed in the developed countries.


The major challenge in this exercise is the number of vehicles, the database of which is developed utilizing multiple sources and assumptions. All the cities do not have the necessary information of their fleet published periodically, nor presented using the same baseline, which makes the process difficult and uncertain. However, while a caution is requested, the vehicle numbers and the subsequent emissions analysis discussed in this report present an indication of the current. The resources used for collecting the fleet numbers are described in Table 2.


Based on the methodology presented in Figure 5 and the estimated total emissions for the four vehicular categories are presented in Figure 8 and Table 3-6. The city pages with detailed trend analysis through 2030 for vehicular number, share of passenger trips, energy consumption, and emissions of PM, NO_x, CO, and CO₂ are presented in Annex 1 and the VAPIS calculator utilized for the analysis is available for download¹⁸.

The emissions inventory presented in this study is an indicative analysis based on the information available in the public domain, plus author's interpretation of the same and comes with a set of limitations that should be noted, while taking the results into consideration further use.

Any further use of the material presented requires thorough investigation and detailed surveys to improve the parameters described and assumed in the earlier sections.

All the growth rates are speculative. The calculations do not include the trucks or non-road transport, such as metro rail or long distance railways.

 $^{^{18}}$ The VAPIS – Vehicular Air Pollution Information System is available for download @ $\,$ http://ww.urbanemissions.info/simair

Table 2: City vehicular fleet for year 2008, information source, and brief description

City	Passenger	Buses	3	2	Source
010)	Cars		Wheelers	Wheelers	Source
Delhi	1,140,000	16,000	80,000	1,600,000	Ms. Anumita Roychoudary,
					CSE, New Delhi, India
Mumbai	507,400	47,600	108,800	865,450	Transport Statistics for Mumbai
TZ 11 .	¥00.0¥0	22 772	05.050	E 01 E 00	Metro Region by MMRDA
Kolkata	509,350	32,550	87,650	531,700	PICEE proceedings,
Chennai	225 150	F 100	100 100	1 110 550	March, 2009, Parti, et al. ¹⁹
Cnennai	335,150	5,100	183,100	1,110,550	PICEE proceedings, March, 2009, Parti, et al.
Hyderabad	303,000	14,500	96,800	1,730,300	AP Pollution Control Board,
Tryuerabau	303,000	14,500	30,000	1,750,500	via IES program
Bangalore	347,100	11,350	221,150	1,341,450	PICEE proceedings,
Dangarore	311,100	11,000		1,011,100	March, 2009, Parti, et al.
Kanpur	48,000	600	1,400	274,250	PICEE proceedings,
P	-,		,	, ,	March, 2009, Sharma, et al.
Agra	9,450	350	1,000	46,250	Regional Transport Office,
-					via Dr. Ajay Taneja
					Dr. B. R. Ambedkar University, Agra
Pune	116,000	1,200	34,200	842,350	Pune Regional Emissions Inventory
					Study (PREIS) ²⁰
Ahmedabad	281,700	950	105,900	1,495,150	BRT System Plan,
					Ahmedabad Municipal Corporation,
D1 1	110 100	0.50	0.470	204.200	via ITDP office
Bhopal	118,100	270	2,450	284,300	Ministry of Urban Development,
Lainum	163,150	18,200	163,200	823,450	May 2008 Journal of Public Transportation,
Jaipur	165,150	16,200	165,200	625,450	Vol No.1, 2005, Singh @ IIT K
Surat	173,500	170	6,250	829,650	Ministry of Urban Development,
Darat	170,000	170	0,200	025,000	May 2008 ²¹
Pondicherry	25,000	60	800	42,800	Ministry of Urban Development,
1 officiality	2 5,000			12,000	May 2008
Bhubaneswar	29,100	150	3,450	95,900	Ministry of Urban Development,
	,		,	•	May 2008
Panaji	79,700	4,220	3,100	302,300	Regional Transport Office,
					via Ms. Mehra, TERI, Goa
Patna	115,450	4,650	30,300	384,500	Ministry of Urban Development,
					May 2008
Kochi	77,100	4,400	36,400	158,100	Ministry of Urban Development,
					May 2008
Nagpur	63,000	1,300	13,850	415,250	Ministry of Urban Development,
0 1	#1 000	100	= = 00	F ¥ 000	May 2008
Guwahati	51,200	400	7,500	75,000	Ministry of Urban Development,
					May 2008

Note:

- For the fleet where the baseline information was not available for 2008, the numbers were estimated based on the available information.
- The vehicle numbers are rounded for simplicity

Proceedings of International Conference on Energy & Environment, March, 2009 @ http://waset.org/pwaset/v39/
Pune Regional Emissions Inventory Study @ http://www.unipune.ernet.in/dept/env/pei/resources.html

²¹ Data from the Annexure report "Traffic and Transportation Policies and Strategies in Urban Areas in India" by

Ministry of Urban Development, Government of India, May, 2008 @ http://urbanindia.nic.in/moud/theministry/ministryofurbandevelopment/main.htm

Table 3: Total PM_{2.5} emissions from the passenger travel in 2008 (tons/year)

City	Passenger Cars	Buses	3 Wheelers	2 Wheelers	Total
Delhi	1,405	235	142	929	2,711
Mumbai	481	3,087	306	503	4,377
Kolkata	563	1,932	415	329	3,240
Chennai	424	364	868	688	2,343
Hyderabad	335	979	244	1,072	2,629
Bangalore	439	808	1,048	831	3,125
Kanpur	39	18	4	133	193
Agra	7	16	4	27	54
Pune	80	63	93	326	562
Ahmedabad	312	60	502	724	1,597
Bhopal	131	15	12	165	322
Jaipur	180	981	774	478	2,414
Surat	192	9	30	482	712
Pondicherry	28	3	4	25	60
Bhubaneswar	32	7	16	56	111
Panaji	88	228	15	176	506
Patna	128	250	144	223	744
Kochi	85	238	172	92	587
Nagpur	70	69	66	241	445
Guwahati	57	22	36	44	157
Total	5,134	9,533	4,903	7,659	

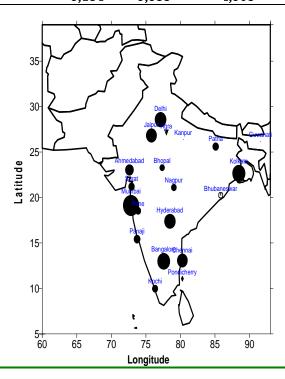


Table 4: Total NO_x emissions from the passenger travel in 2008 (tons/year)

City	Passenger Cars	Buses	3 Wheelers	2 Wheelers	Total
Delhi	9,907	20,883	4,740	2,156	37,686
Mumbai	3,006	80,729	7,092	1,629	92,456
Kolkata	3,219	46,655	7,790	1,067	58,731
Chennai	2,648	8,790	16,271	2,229	29,937
Hyderabad	1,915	24,887	5,735	3,966	36,503
Bangalore	2,742	19,506	19,654	2,692	44,594
Kanpur	256	815	83	430	1,584
Agra	47	441	68	87	643
Pune	458	1,691	1,945	1,057	5,150
Ahmedabad	1,780	1,558	9,412	2,677	15,428
Bhopal	746	381	217	611	1,956
Jaipur	1,031	25,672	14,504	1,769	42,977
Surat	1,097	240	554	1,783	3,673
Pondicherry	158	86	73	92	409
Bhubaneswar	184	182	305	206	877
Panaji	504	5,952	275	650	7,380
Patna	730	6,533	2,691	826	10,780
Kochi	487	6,226	3,232	340	10,284
Nagpur	398	1,796	1,230	892	4,317
Guwahati	324	567	667	161	1,718
Total	31,972	257,556	96,724	25,753	

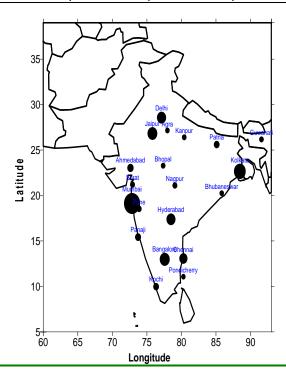
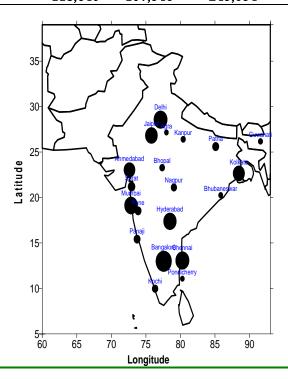
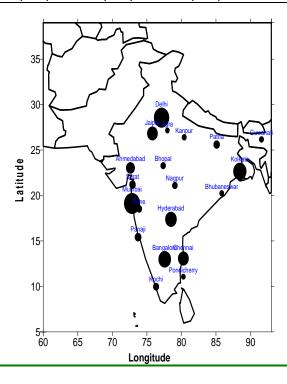
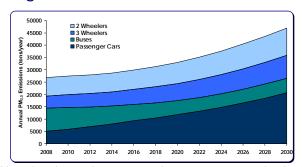
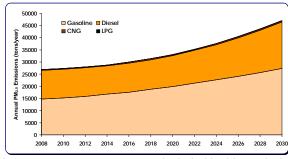


Table 5: Total CO emissions from the passenger travel in 2008 (tons/year)

City	Passenger Cars	Buses	3 Wheelers	2 Wheelers	Total
Delhi	28,820	9,092	7,110	40,886	85,908
Mumbai	10,222	33,716	16,763	22,116	82,817
Kolkata	14,486	19,485	20,773	14,492	69,237
Chennai	9,002	3,671	43,389	30,270	86,332
Hyderabad	8,618	10,394	14,339	47,163	80,513
Bangalore	9,323	8,147	52,411	36,564	106,444
Kanpur	967	348	184	5,840	7,338
Agra	159	184	182	1,181	1,707
Pune	2,061	706	5,024	14,350	22,142
Ahmedabad	8,011	651	25,100	31,839	65,601
Bhopal	3,359	159	579	7,264	11,362
Jaipur	4,640	10,722	38,679	21,042	75,083
Surat	4,935	100	1,477	21,200	27,712
Pondicherry	711	36	194	1,094	2,034
Bhubaneswar	827	76	813	2,450	4,167
Panaji	$2,\!267$	2,486	734	7,724	13,211
Patna	3,283	2,729	7,177	9,824	23,013
Kochi	2,192	2,600	8,618	4,040	17,450
Nagpur	1,791	750	3,280	10,611	16,433
Guwahati	1,456	237	1,778	1,916	5,387
Total	118,640	107,946	249,094	337,018	


Table 6: Total CO₂ emissions from the passenger travel in 2008 (million tons/year)


City	Passenger Cars	Buses	3 Wheelers	2 Wheelers	Total
Delhi	3,337,363	1,147,076	406,475	982,180	5,873,094
Mumbai	1,139,550	3,923,625	701,429	528,237	6,292,841
Kolkata	1,535,283	2,267,523	627,353	346,152	4,776,312
Chennai	1,003,528	427,210	1,310,350	723,007	3,464,094
Hyderabad	913,326	1,209,557	645,100	1,123,253	3,891,236
Bangalore	1,039,326	948,027	1,582,806	873,339	4,443,498
Kanpur	106,052	42,488	6,894	139,484	294,918
Agra	17,673	21,453	5,509	28,217	72,852
Pune	218,451	82,163	187,694	342,751	831,059
Ahmedabad	849,077	75,712	758,014	758,287	2,441,090
Bhopal	356,022	18,517	17,500	173,010	565,048
Jaipur	491,789	1,247,699	1,168,091	501,152	3,408,731
Surat	523,026	11,659	44,613	504,908	1,084,206
Pondicherry	75,356	4,183	5,848	26,044	111,431
Bhubaneswar	87,669	8,847	24,557	58,354	179,428
Panaji	$240,\!257$	289,270	22,174	183,969	735,669
Patna	347,980	317,525	216,751	233,982	1,116,238
Kochi	232,311	302,575	260,262	96,215	891,362
Nagpur	189,834	87,302	99,067	252,714	628,918
Guwahati	154,287	27,569	53,681	45,643	281,180
Total	13,018,330	12,652,797	8,158,955	8,043,542	

In the emissions inventory, the large cities stand out, because of the shear number of vehicles and the vehicle kilometers traveled. **Figure 9** presents the share of PM_{2.5} emissions by vehicle category and fuel type. In case of Delhi, the total emissions, especially for the particulates is comparatively low, in spite of a large vehicular fleet, due to the extensive use of the compressed natural gas (CNG) for the bus, para transit, taxi, and a share of passenger car fleet. The use of liquefied petroleum gas (LPG) is included for the para transit fleets of Mumbai, Pune, and Hyderabad only²².

Figure 9: Annual total emissions for PM_{2.5} by vehicle category & fuel type for 20 cities

Note that the totals represent the passenger travel only. A major non-passenger source not included in this analysis is "trucks".

From **Annex 1**, the motorcycle transport is the dominant mode of transport for most of the secondary and tertiary cities and it is also reflected in the emissions inventory. For the motorcycles and cars, the gasoline remains the dominant fuel source. Diesel is the main fuel source for the buses for all the cities, except for Delhi, and a share of diesel based passenger cars is also increasing in the cities. In the mega cities of Delhi, Hyderabad, Chennai, Bangalore, the para transit plays a critical role for mobility and expected to continue through 2030.

Among the four vehicle categories, the highest growth rate is estimated for the passenger cars and hence the tripling in the respective emissions. For the public transport, the current

City level analysis exists for the cities Delhi, Mumbai, Kanpur, Pune, Ahmedabad, and Hyderabad Gurjar et al., 2004, "Emission estimates and trends (1990–2000) for megacity Delhi and implications" Atmospheric Environment @ http://dx.doi.org/10.1016/j.atmoseny.2004.05.057

Venkatraman et al., 2002, "Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX (1999)" Atmospheric Environment @ http://dx.doi.org/10.1016/S1352-2310(02)00167-X

Guttikunda et al., 2007, "Air pollution and Co-benefits analysis for Hyderabad, India" @ http://www.epa.gov/ies/india/apportionment_documents.htm

Pune Regional Emissions Inventory Study @ http://www.unipune.ernet.in/dept/env/pei/resources.html
Sharma et al., "Impact of CNG conversion on air quality in Kanpur", Proceedings of International Conference on Energy & Environment, March, 2009 @ http://waset.org/pwaset/v39/

 $^{^{22}}$ Relevant references – most of the past studies have focused on national scale emissions analysis.

Bose, 1999, "Automotive energy use and emissions control: a simulation model to analyse transport strategies for Indian metropolises" Energy Policy @ $\underline{\text{http://dx.doi.org/10.1016/S0301-4215(98)00045-7}}$

Garg et al., 2006, "The sectoral trends of multigas emissions inventory of India", Atmospheric Environment @ http://dx.doi.org/10.1016/j.atmosenv.2006.03.045

Reddy et al., 2002, "Inventory of aerosols and sulfur dioxide emissions in India, Atmospheric Environment @ http://dx.doi.org/10.1016/S1352-2310(01)00463-0

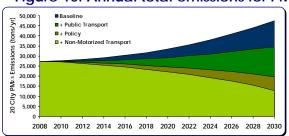
bus fleet for most of the cities is old, with an average age of 6-8 years and in some cases more than 10 years. With the JNNURM funds promoting the public transport and supporting the new bus purchase for most of the cities, the newer bus fleet is expected to reduce the relative emissions in the coming decades. Overall, the emissions are expected increase and deteriorating the air quality under business as usual.

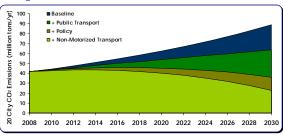
In Conclusion - Co-benefits & Challenges

A major challenge for effective implementation of transport interventions is the private motor vehicle ownership, which is expected to maintain their current share on the roads. Hence, in order to improve the travel times and speeds, the best are the modes most commonly used, especially public transport (bus and metro, where available) and NMT (walking and biking). In this study, three combined interventions are evaluated for the emissions co-benefits (particulates for the health concerns and CO₂ for the climate change concerns)

- Promotion of the public transport, resulting in at least 30 percent increase in the riders by 2030
- Introduction of stringent standards and better traffic management (improving the deterioration rates and resulting in better fuel efficiency), resulting in at least 38 percent improvement overall emission factors and fuel economy
- Promotion of NMT resulting in at least 20 percent reduction in the passenger car riders, and 10 percent each from buses, 2 wheelers, and 3 wheelers by 2030, primarily from the short trips

It is assumed that the expected 30 percent increase in the ridership can be supported by increase in the necessary number of buses and required infrastructure. Similarly, it is expected that provisions will be made to support the necessary shift to NMT. The second measure represents the policy reforms which will have the largest impact on the fuel demand (by better fuel economy standards for the manufacturers), on the emissions (via emission standards), and for better traffic management. At the end, the analysis is expected to present a possible range of emission reductions, for a combination of the three measures, but not delve into the modalities of the implementation of the measures²³.


The **Figure 10** presents a summary of the estimated change in total emissions for the particulates and CO₂ through 2030, upon implementation of the three interventions for all the twenty cities combined. A combined reduction of at least 45 percent of the emissions compared to current 2008 emission levels is estimated, which represents a significant reduction in the exposure times and air pollution related health impacts.


The uncertainties related to the emissions projections are large although there are potentially important unaddressed uncertainties (e.g., growth rates, emission factors of the in-use fleet, the vehicle kilometers traveled, and expected sales of various modes of transport – model and fuel), which need further scrutiny.

-

²³ Ministry of Urban Development inaugurates a seminar on "Guidelines And Toolkits For Urban Transport Development in Medium Sized Cities in India", May 29th, 2009 @ http://pib.nic.in/release/release.asp?relid=48940

Figure 10: Annual total emissions for PM_{2.5} & CO₂ for three interventions for 20 cities

However, the co-benefits of these interventions can be multi dimensional. The fact that major roads tend to support the neighborhoods around them also means that the poor tend to live in these neighborhoods. In the dense urban areas, this means that low-income people tend to be exposed to higher concentrations of urban transport air pollution²⁴.

Mr. Todd Litman of the Victoria Transport Policy Institute (Email: litman@vtpi.org), reports that a number of recent studies do show that high quality public transit service can improve public health by

- Increasing physical activity (people who use public transit on a particular are about 3 times more likely to achieve the basic amount of walking required for public health as people who drive and do not use public transit)
- Reducing per capita traffic fatalities (residents of cities with high quality public transit have about a quarter of the per-capita traffic fatality rates as residents of more automobile-dependent communities)
- Increased affordability and therefore less stress and more money left in the household budget for healthy food and other necessities (residents of cities with high quality public transportation spend about 20% small portion of household budgets on transportation, and this effect is probably larger for lower-income households)
- Improved accessibility for non-drivers, and therefore less difficulty reaching medical services and healthy food.

These factors cannot overcome other demographic and economic factors that reduce poor people's health, but it does suggest that everybody, particularly poor people, are much better off in a transit oriented community than in an automobile-dependent community.

Among an array of interventions available for the policy makers, the common practice has been to focus largely on infrastructure development²⁵. In the transport sector, while building the roads is important, it is also important to focus on the prevention of the air pollution due to the impending exhaust emissions.

In the industrial sector, it is easier to consider capturing the emissions out of a furnace, because they cannot imagine changing their fuel source or an alternative for the manufacturing process. However, in the transport sector, a large share of environmental

²⁴ The poor are over-represented among the estimated 1.2 million annual premature deaths caused by exposure to unhealthy levels of mobile-source air emissions (WHO)

²⁵ Down to Earth, May 31st, 2008, "Caravan to Disaster" @ http://www.downtoearth.org.in/full6.asp?foldername=20080531&filename=news&sec_id=9&sid=46

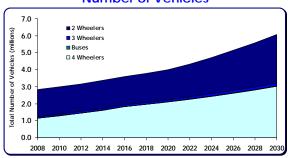
benefits can be achieved through a modal shift by providing for better and cleaner buses, and space for pedestrian walking and cycling²⁶.

In the name of mobility, the supply of the personal transport has become the key, which tend to put more importance on the products (roads) than the services (provisions for public transport and NMT). An informed decision would make the policy makers take a serious look at energy efficiency and cleaner energy sources (such as electric bikes²⁷) which will benefit the economy²⁸ as well as the environment.

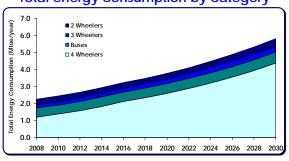
²⁶ Mr. Penolosa (former mayor of Bogota, Columbia) asks to choose people over cars, "NMT is the best" and the city authorities need to promote these more @ http://www.thejakartaglobe.com/news/article/18929.html

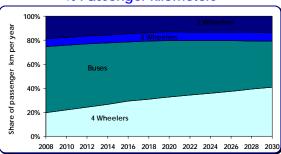
²⁷ Latest article in the Economist, praised the efforts of China in promoting the electric motor cycles, which provide 30-50 kilometers for a fraction of the cost of the fuel spent in the regular motorcycle. The charging takes 5-8 hours, depending on the battery power, but the travel is safer and faster than the regular bicycles, and the environment is clean @ http://www.economist.com/world/international/displayStory.cfm?story_id=13565800

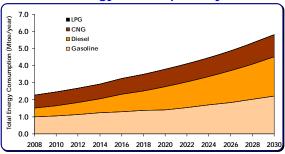
²⁸ New York Times, April 1st, 2009, "China vies to be world's leader in electric cars" @ http://www.nytimes.com/2009/04/02/business/global/02electric.html


Annex 1

City Pages presenting the estimated trends in vehicular numbers, energy consumption, and emissions (PM, NO_x , CO_x) and CO_2)

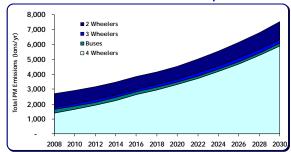

Delhi, India


Number of Vehicles

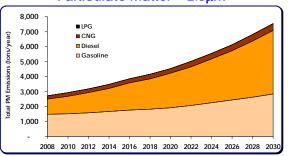


Total energy consumption by category

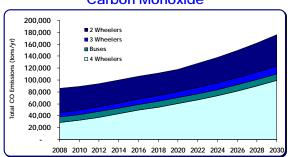
% Passenger kilometers

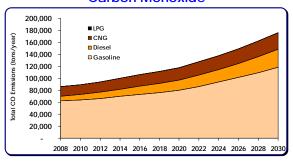


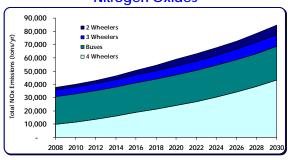
Delhi, India

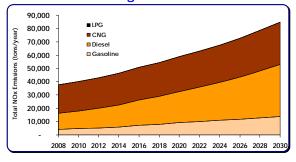

Total emissions by category

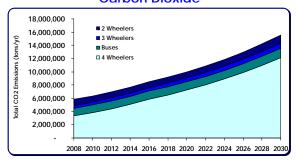
Total emissions by fuel

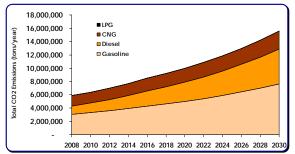

Particulate Matter < 2.5µm


Particulate Matter < 2.5μm

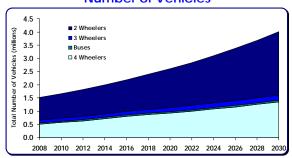

Carbon Monoxide

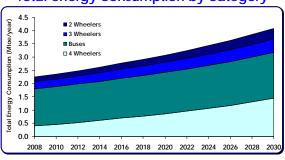

Carbon Monoxide

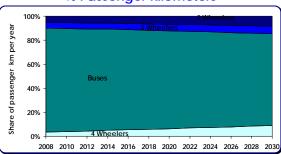

Nitrogen Oxides

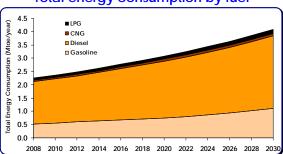

Nitrogen Oxides

Carbon Dioxide


Carbon Dioxide

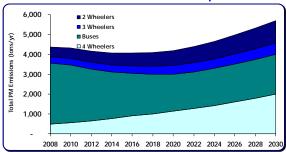

Mumbai, India


Number of Vehicles

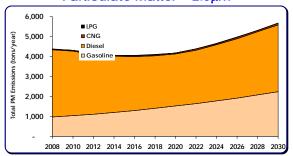


Total energy consumption by category

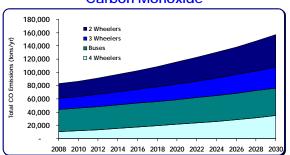
% Passenger kilometers

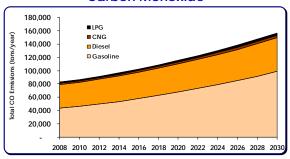


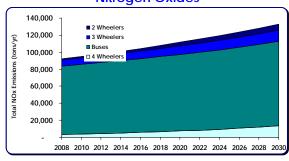
Mumbai, India

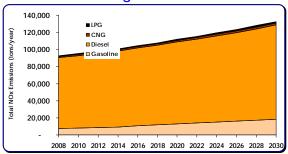

Total emissions by category

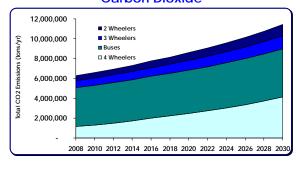
Total emissions by fuel

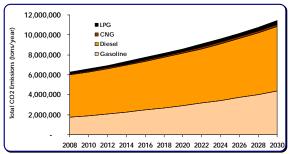

Particulate Matter < 2.5µm


Particulate Matter < 2.5μm

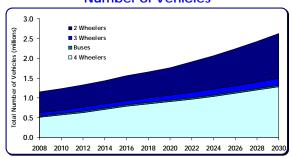

Carbon Monoxide

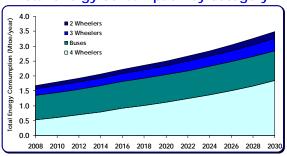

Carbon Monoxide

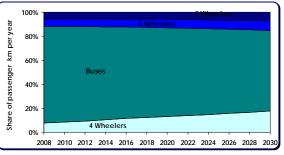

Nitrogen Oxides

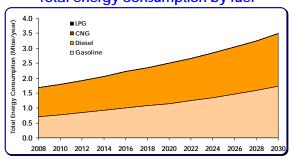

Nitrogen Oxides

Carbon Dioxide


Carbon Dioxide

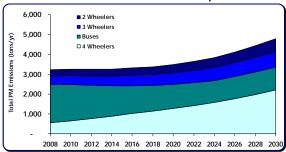

Kolkata, India


Number of Vehicles

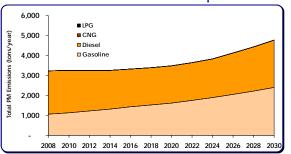


Total energy consumption by category

% Passenger kilometers

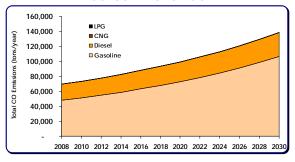


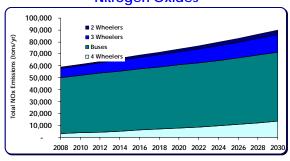
Kolkata, India

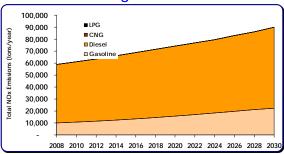

Total emissions by category

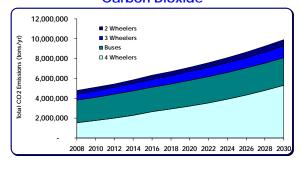
Total emissions by fuel

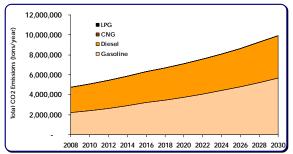
Particulate Matter < 2.5µm

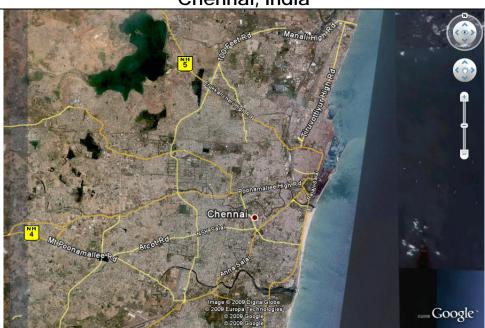

Particulate Matter < 2.5μm

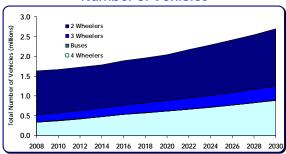

Carbon Monoxide

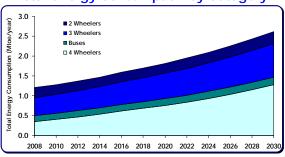

Carbon Monoxide

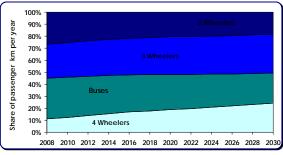

Nitrogen Oxides

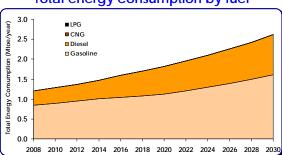

Nitrogen Oxides


Carbon Dioxide


Carbon Dioxide

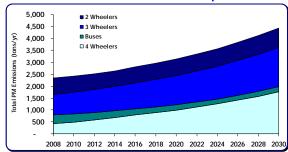

Chennai, India


Number of Vehicles

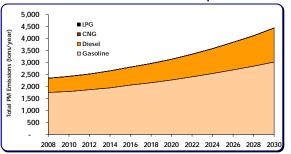


Total energy consumption by category

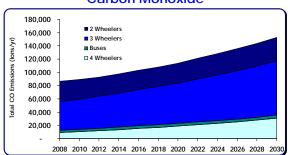
% Passenger kilometers

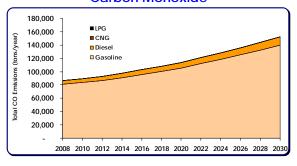


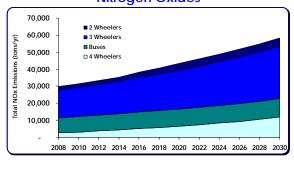
Chennai, India

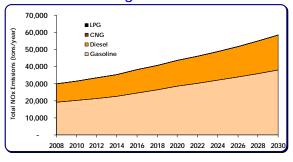

Total emissions by category

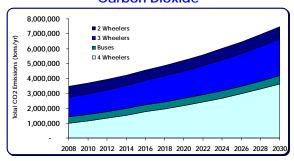
Total emissions by fuel

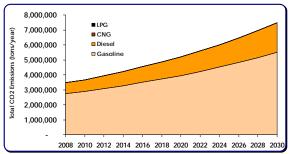

Particulate Matter < 2.5µm


Particulate Matter < 2.5μm

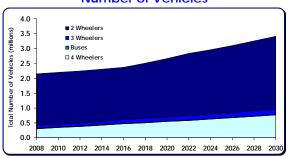

Carbon Monoxide

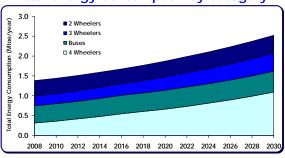

Carbon Monoxide

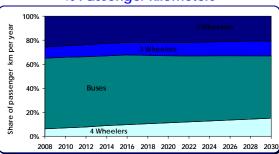

Nitrogen Oxides

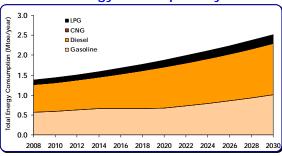

Nitrogen Oxides

Carbon Dioxide


Carbon Dioxide

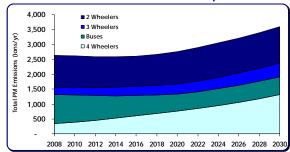

Hyderabad, India


Number of Vehicles

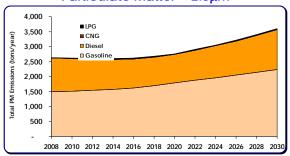


Total energy consumption by category

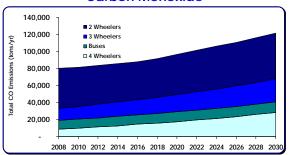
% Passenger kilometers

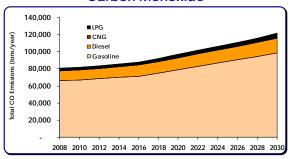


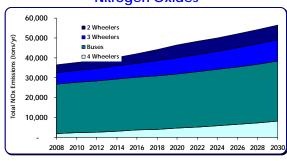
Hyderabad, India

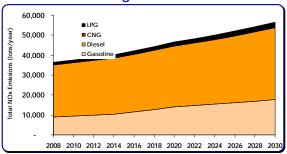

Total emissions by category

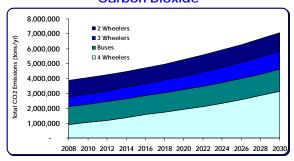
Total emissions by fuel

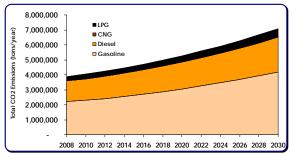

Particulate Matter < 2.5µm


Particulate Matter < 2.5μm

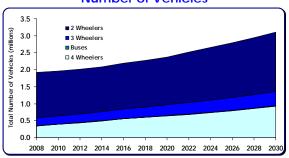

Carbon Monoxide

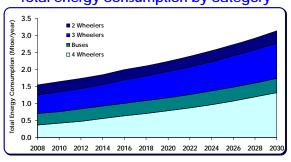

Carbon Monoxide

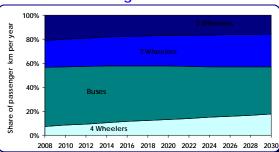

Nitrogen Oxides

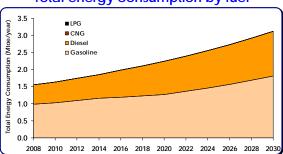

Nitrogen Oxides

Carbon Dioxide


Carbon Dioxide

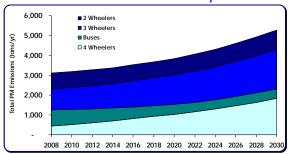

Bangalore, India


Number of Vehicles

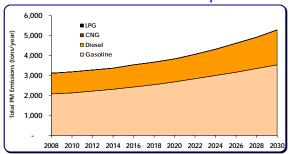


Total energy consumption by category

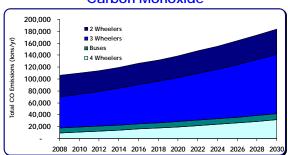
% Passenger kilometers

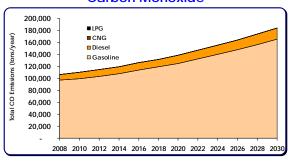


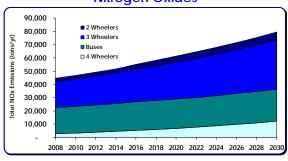
Bangalore, India

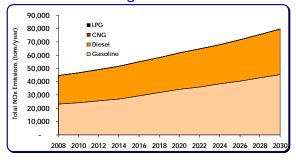

Total emissions by category

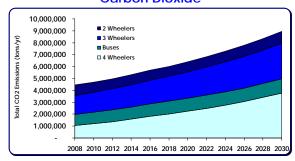
Total emissions by fuel

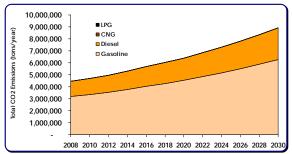

Particulate Matter < 2.5µm

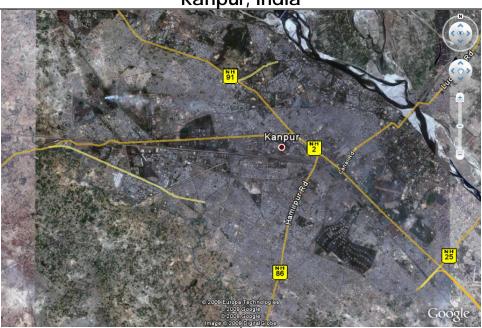

Particulate Matter < 2.5μm

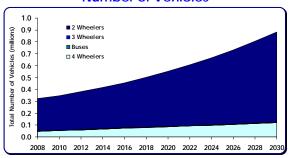

Carbon Monoxide

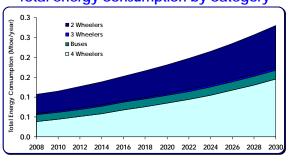

Carbon Monoxide

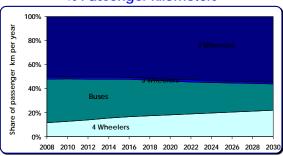

Nitrogen Oxides

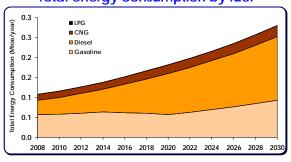

Nitrogen Oxides


Carbon Dioxide


Carbon Dioxide

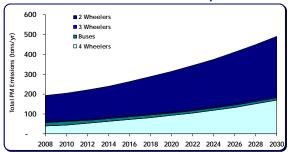

Kanpur, India


Number of Vehicles

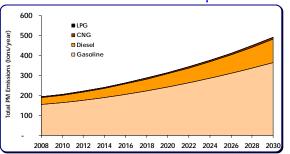


Total energy consumption by category

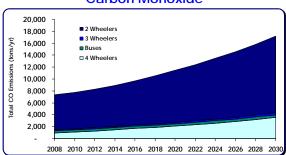
% Passenger kilometers

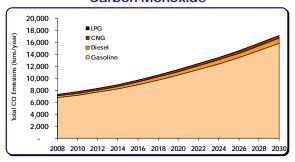


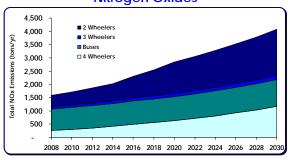
Kanpur, India

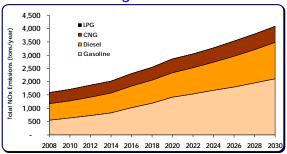

Total emissions by category

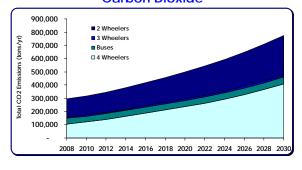
Total emissions by fuel

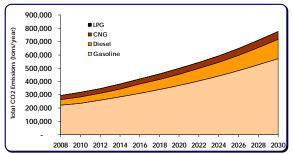

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm


Carbon Monoxide

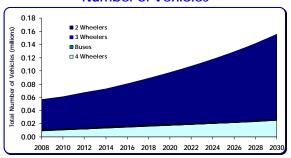

Carbon Monoxide

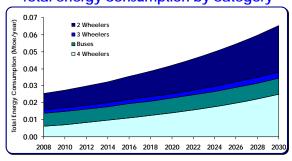

Nitrogen Oxides

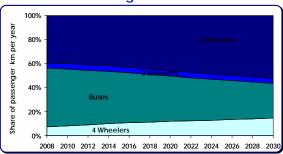


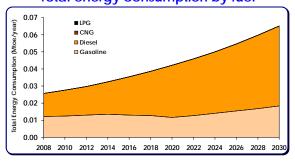
Nitrogen Oxides

Carbon Dioxide



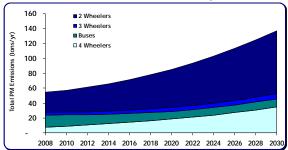

Agra, India


Number of Vehicles

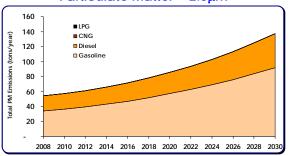


Total energy consumption by category

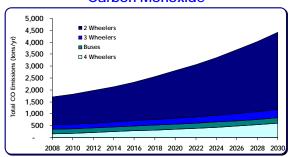
% Passenger kilometers

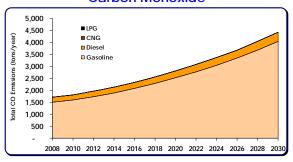


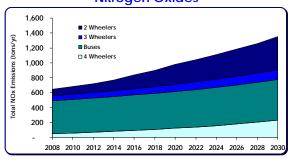
Agra, India

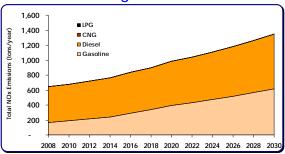

Total emissions by category

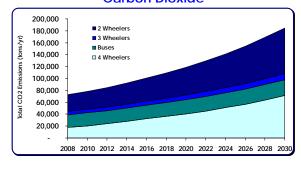
Total emissions by fuel

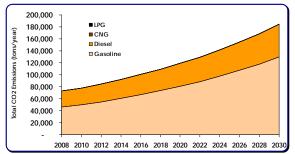

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm

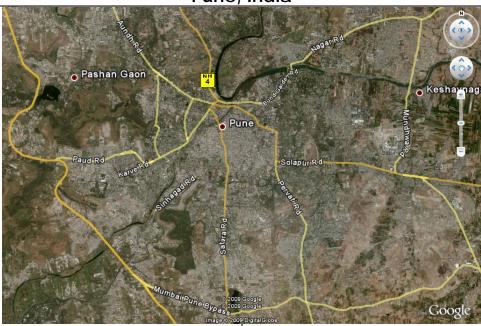

Carbon Monoxide


Carbon Monoxide

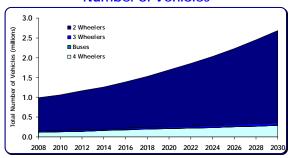

Nitrogen Oxides

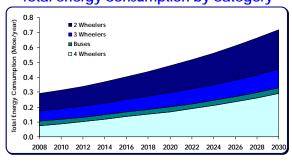


Nitrogen Oxides

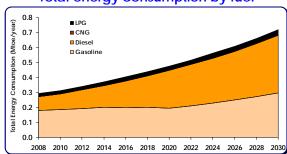


Carbon Dioxide



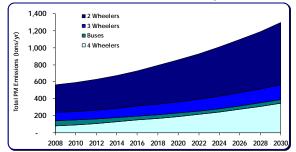

Pune, India

Number of Vehicles

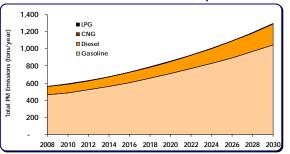


Total energy consumption by category

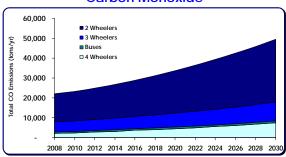
% Passenger kilometers

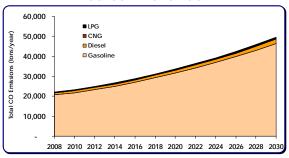


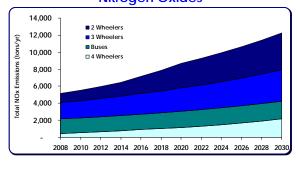
Pune, India

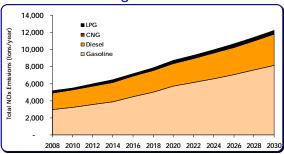

Total emissions by category

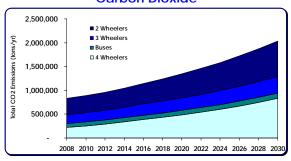
Total emissions by fuel

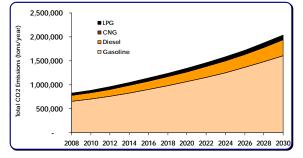

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm

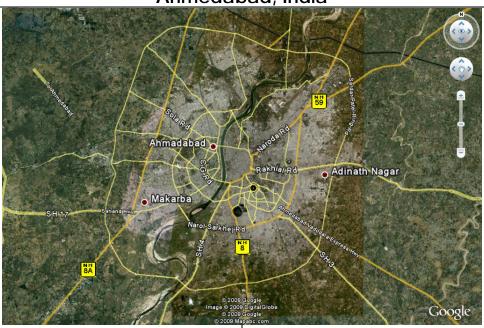

Carbon Monoxide


Carbon Monoxide

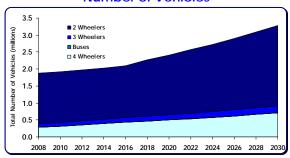

Nitrogen Oxides

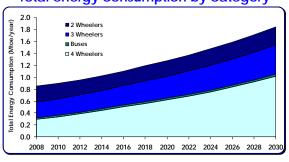


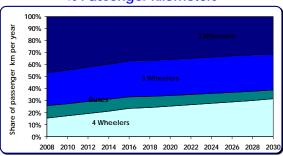
Nitrogen Oxides

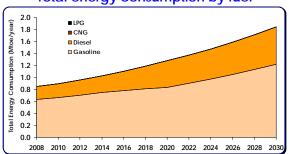


Carbon Dioxide



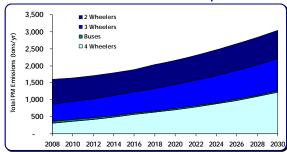

Ahmedabad, India


Number of Vehicles

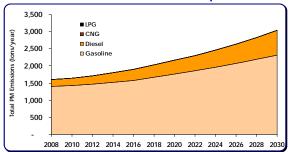


Total energy consumption by category

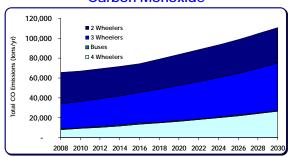
% Passenger kilometers

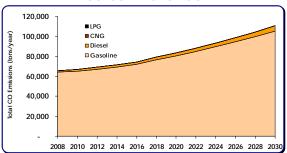


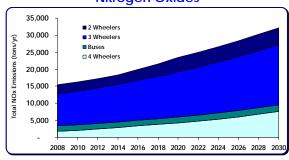
Ahmedabad, India

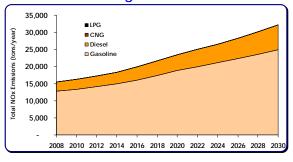

Total emissions by category

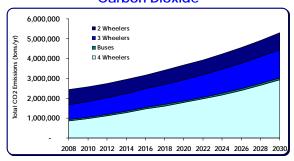
Total emissions by fuel

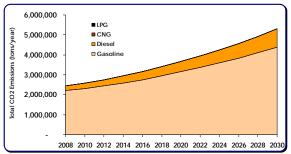

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm


Carbon Monoxide

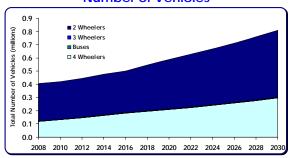

Carbon Monoxide

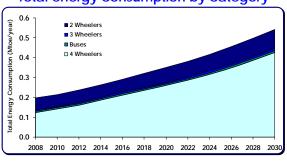

Nitrogen Oxides

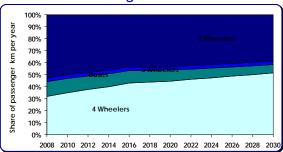


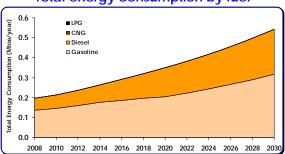
Nitrogen Oxides

Carbon Dioxide



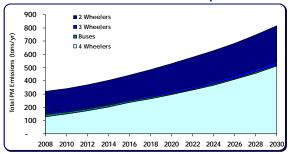

Bhopal, India


Number of Vehicles

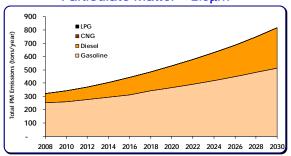


Total energy consumption by category

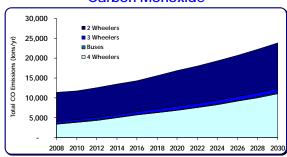
% Passenger kilometers

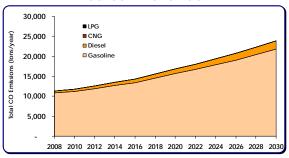


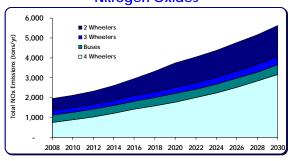
Bhopal, India


Total emissions by category

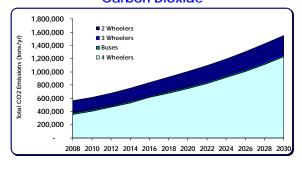
Total emissions by fuel

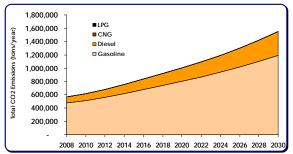

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm

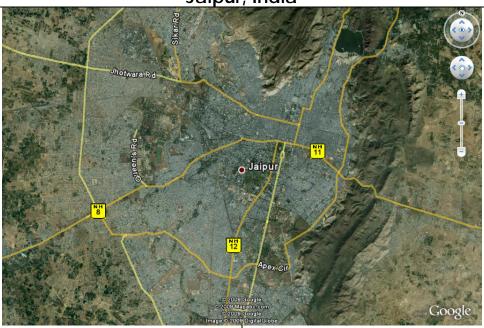

Carbon Monoxide


Carbon Monoxide

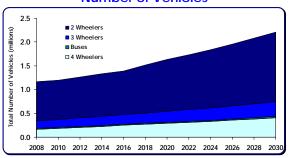

Nitrogen Oxides

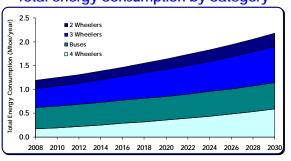


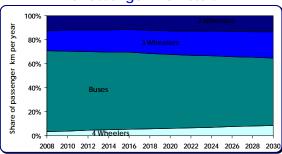
Nitrogen Oxides

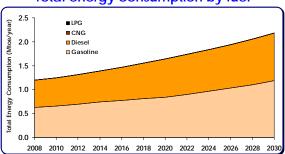


Carbon Dioxide



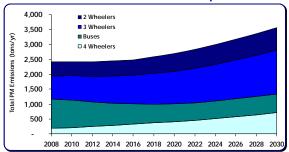

Jaipur, India


Number of Vehicles

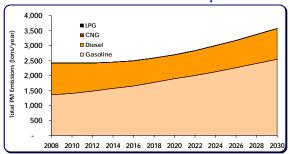


Total energy consumption by category

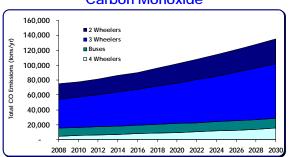
% Passenger kilometers

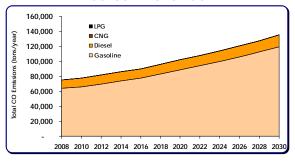


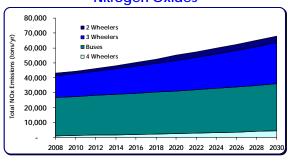
Jaipur, India

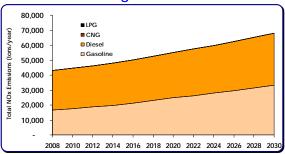

Total emissions by category

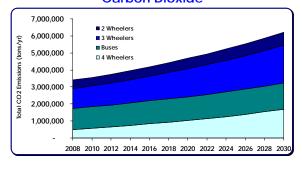
Total emissions by fuel

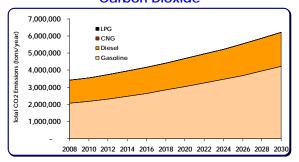

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm


Carbon Monoxide

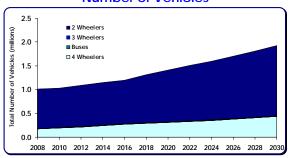

Carbon Monoxide

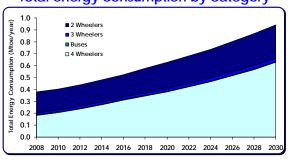

Nitrogen Oxides

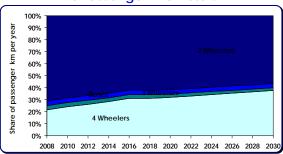


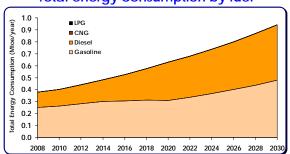
Nitrogen Oxides

Carbon Dioxide



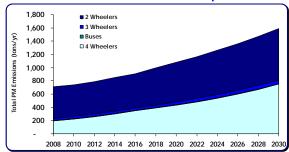

Surat, India


Number of Vehicles

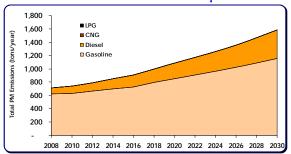


Total energy consumption by category

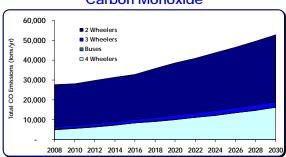
% Passenger kilometers

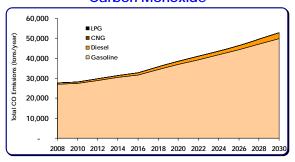


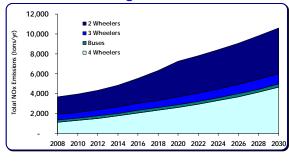
Surat, India

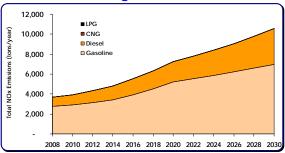

Total emissions by category

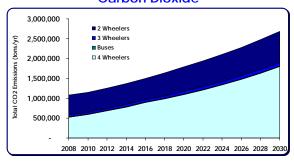
Total emissions by fuel

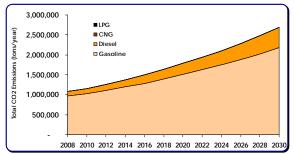

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm

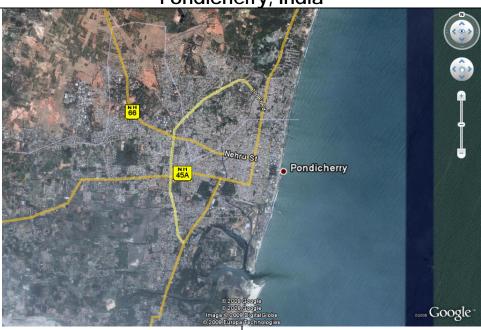

Carbon Monoxide


Carbon Monoxide

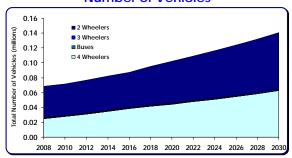

Nitrogen Oxides

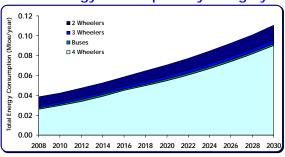


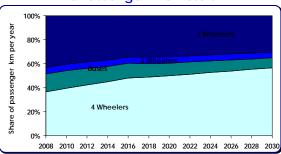
Nitrogen Oxides

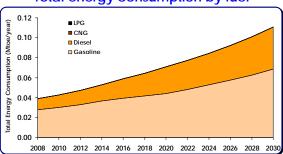


Carbon Dioxide



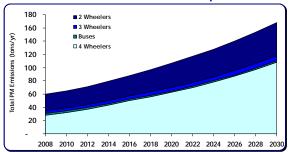

Pondicherry, India


Number of Vehicles

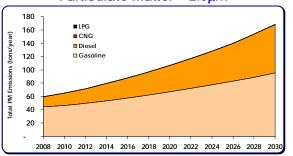


Total energy consumption by category

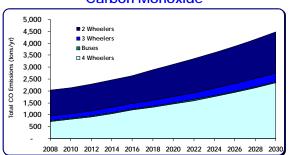
% Passenger kilometers

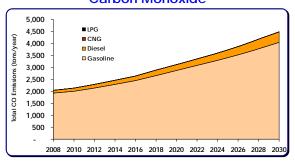


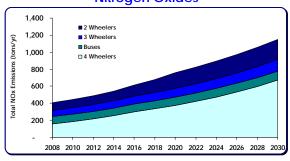
Pondicherry, India

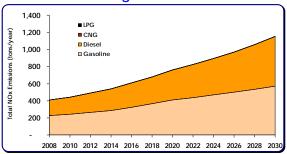

Total emissions by category

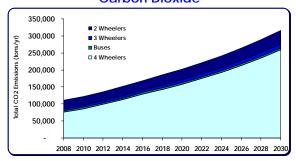
Total emissions by fuel

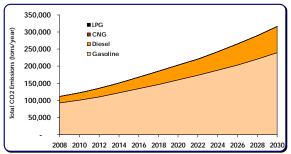

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm

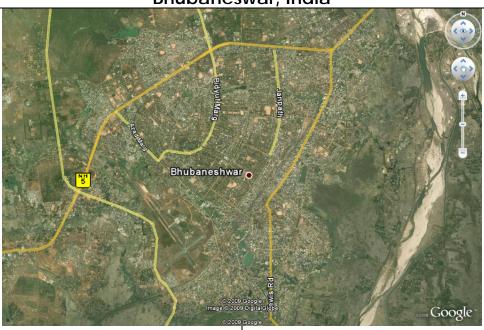

Carbon Monoxide


Carbon Monoxide

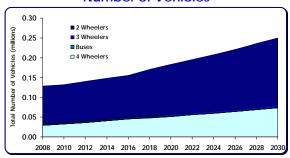

Nitrogen Oxides

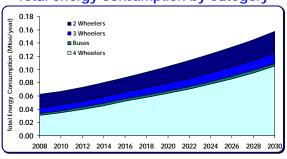


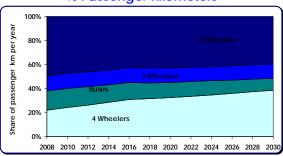
Nitrogen Oxides

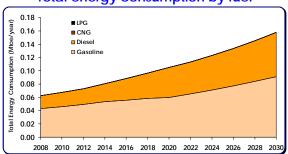


Carbon Dioxide



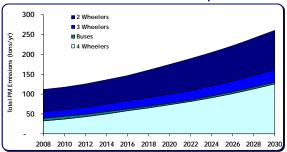

Bhubaneswar, India


Number of Vehicles

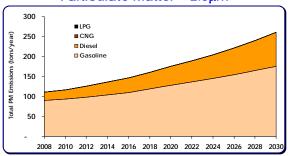


Total energy consumption by category

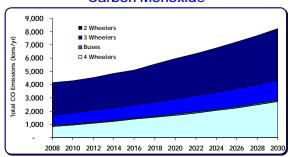
% Passenger kilometers

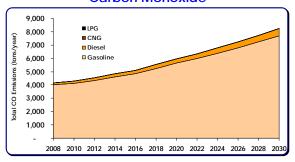


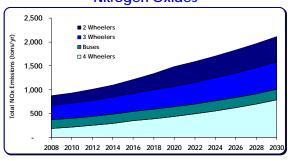
Bhubaneswar, India

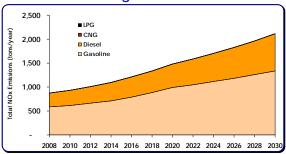

Total emissions by category

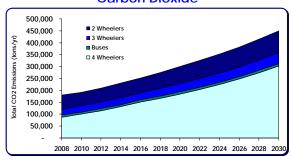
Total emissions by fuel

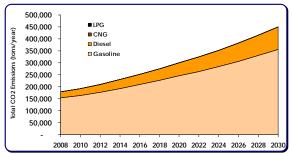

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm


Carbon Monoxide

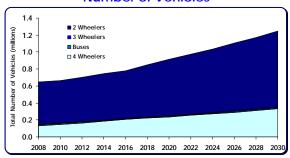

Carbon Monoxide

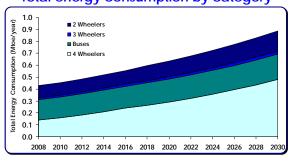

Nitrogen Oxides

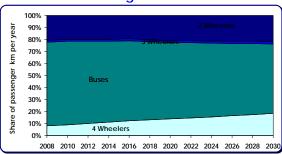


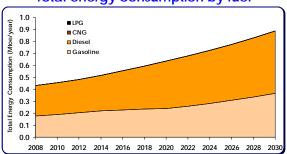
Nitrogen Oxides

Carbon Dioxide



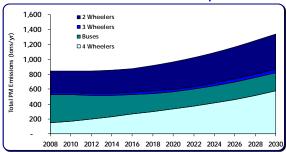

Panaji, India


Number of Vehicles

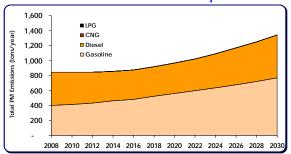


Total energy consumption by category

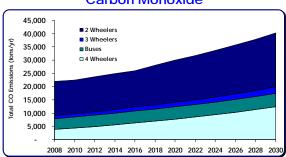
% Passenger kilometers

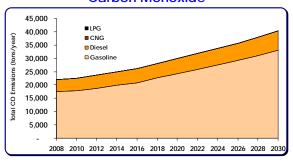


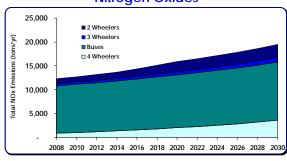
Panaji, India

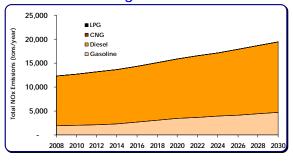

Total emissions by category

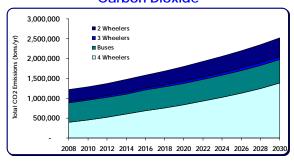
Total emissions by fuel

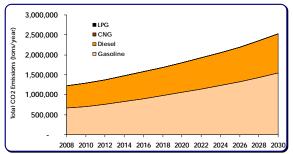

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm


Carbon Monoxide

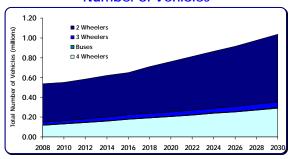

Carbon Monoxide

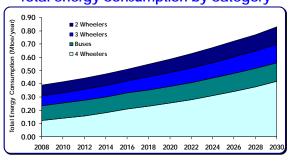

Nitrogen Oxides



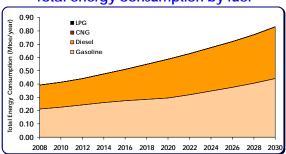
Nitrogen Oxides

Carbon Dioxide



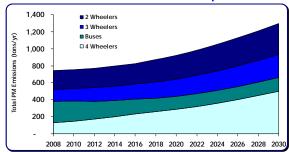

Patna, India

Number of Vehicles

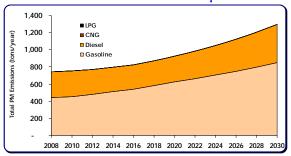


Total energy consumption by category

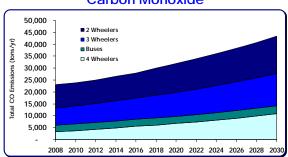
% Passenger kilometers

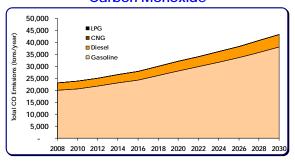


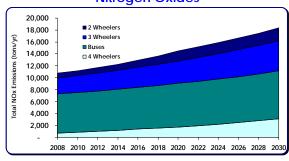
Patna, India

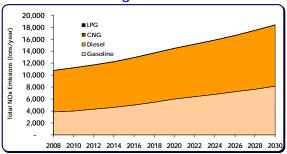

Total emissions by category

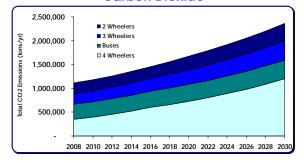
Total emissions by fuel

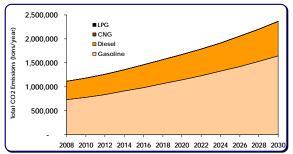

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm


Carbon Monoxide

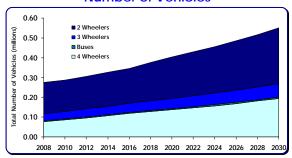

Carbon Monoxide

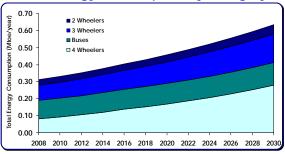

Nitrogen Oxides

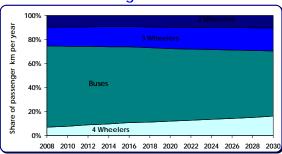


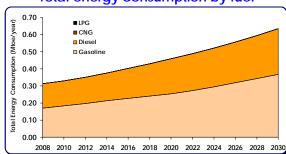
Nitrogen Oxides

Carbon Dioxide



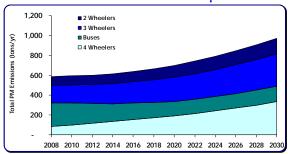

Kochi, India


Number of Vehicles

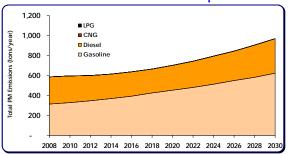


Total energy consumption by category

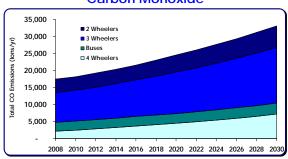
% Passenger kilometers

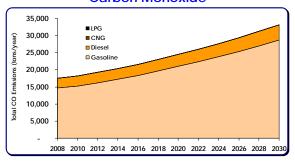


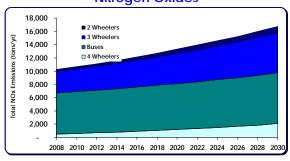
Kochi, India

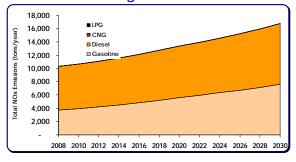

Total emissions by category

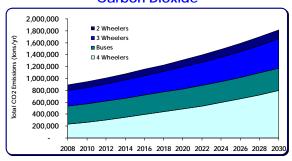
Total emissions by fuel

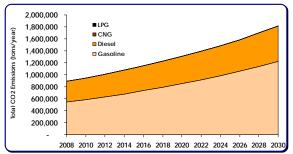

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm


Carbon Monoxide

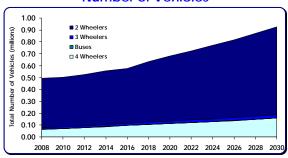

Carbon Monoxide

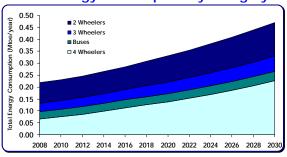

Nitrogen Oxides

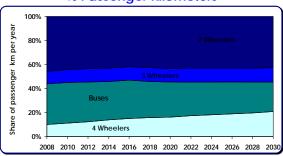


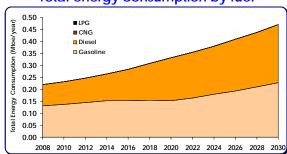
Nitrogen Oxides

Carbon Dioxide



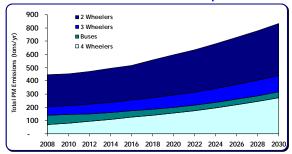

Nagpur, India


Number of Vehicles

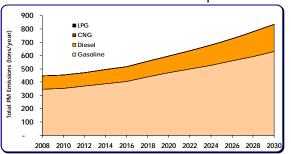


Total energy consumption by category

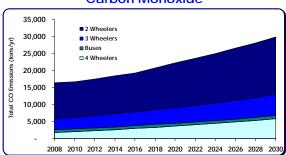
% Passenger kilometers

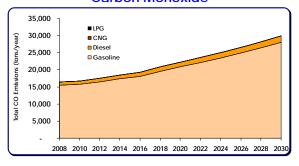


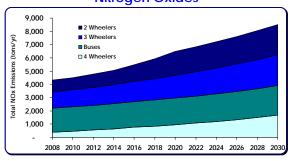
Nagpur, India

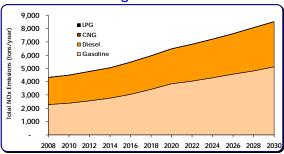

Total emissions by category

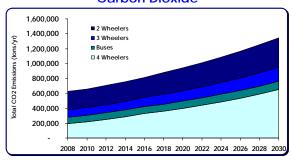
Total emissions by fuel

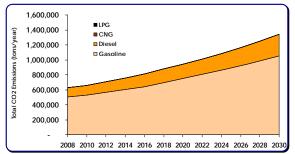

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm


Carbon Monoxide

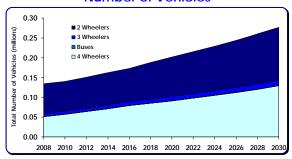

Carbon Monoxide

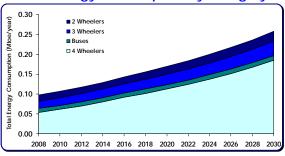

Nitrogen Oxides

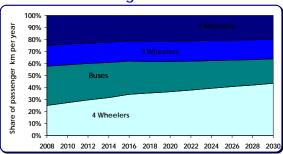


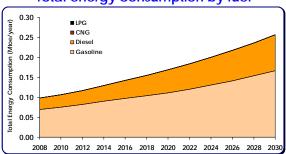
Nitrogen Oxides

Carbon Dioxide



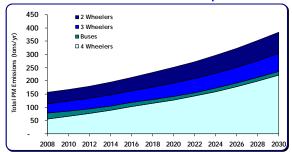

Guwahati, India


Number of Vehicles

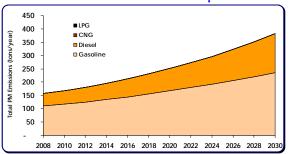


Total energy consumption by category

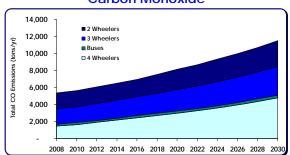
% Passenger kilometers

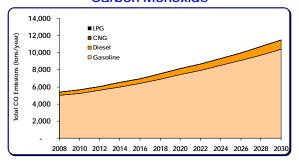


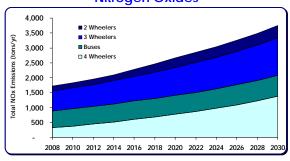
Guwahati, India

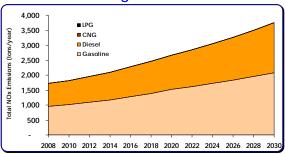

Total emissions by category

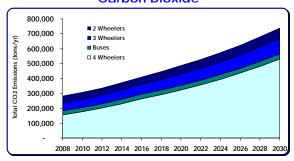
Total emissions by fuel

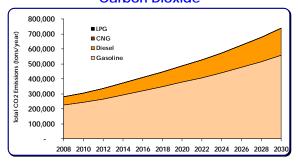

Particulate Matter < 2.5μm


Particulate Matter < 2.5μm


Carbon Monoxide


Carbon Monoxide


Nitrogen Oxides



Nitrogen Oxides

Carbon Dioxide

