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The knowledge of hydrological variables (e.g. soil 
moisture, evapotranspiration) are of pronounced  
importance in various applications including flood 
control, agricultural production and effective water 
resources management. These applications require the 
accurate prediction of hydrological variables spatially 
and temporally in watershed/basin. Though hydrolo-
gical models can simulate these variables at desired 
resolution (spatial and temporal), often they are vali-
dated against the variables, which are either sparse in 
resolution (e.g. soil moisture) or averaged over large 
regions (e.g. runoff). A combination of the distributed 
hydrological model (DHM) and remote sensing (RS) 
has the potential to improve resolution. Data assimila-
tion schemes can optimally combine DHM and RS. 
Retrieval of hydrological variables (e.g. soil moisture) 
from remote sensing and assimilating it in hydrologi-
cal model requires validation of algorithms using field 
studies. Here we present a review of methodologies 
developed to assimilate RS in DHM and demonstrate 
the application for soil moisture in a small experimen-
tal watershed in south India. 
 
Keywords: Data assimilation, hydrological model,  
remote sensing, soil moisture. 

Introduction 

HYDROLOGICAL variables (e.g. soil moisture, evapotran-
spiration) play an important role in applications such as 
flood control, agricultural production and sustainable  
water resources management under hydroclimatic changes. 
These applications require an accurate prediction of  
hydrological variables spatially and temporally in a  
watershed/basin. Distributed hydrological models (DHM) 
can provide the desired variables at required resolution, 
and are useful for simulation of the anthropogenic effects, 
such as land use change, groundwater development and 
irrigation1. Remote sensing (RS) provides the data in the 
form of a squared grid, hence distributed hydrological 
models (DHM) with a similar grid structure are suitable 

to utilize this data. Input data and state variables, which 
can be assessed from the RS data cannot be explicitly in-
cluded in the DHMs, so in order to fully utilize the RS 
data such models may require some adaptations1. Further, 
a particular problem in relation to the validation of dis-
tributed hydrological models is that, while spatial data 
such as topography, soil type and land cover are usually 
available as input data, spatiotemporal data such as vege-
tation indices, soil moisture and precipitation are often 
not available for calibration and validation2,3. Therefore, 
if distributed models are calibrated and validated only 
with a lumped variable of the entire catchment such as 
stream discharge, then the performance of the DHM is 
limited. 
 Remote sensing of variables such as precipitation, soil 
moisture and vegetation indices is one of the most pro-
mising techniques to bring spatiotemporal data into distri-
buted hydrological models. RS provides an indirect 
measurement of hydrological variables and hence for  
extraction of the state variables, one has to resort to data 
retrieval algorithms. The use of remote sensing data in 
distributed hydrological models has been summarized for 
precipitation4,5, snow6,7, evapotranspiration8,9, soil mois-
ture10,11 and hydrological modeling in general12,13. Princi-
pal focus and emphasis in the recent years, for example 
on soil moisture, has been on active and passive micro-
wave methods10,14,15. The active methods, especially the 
synthetic aperture radar (SAR), can provide extremely 
good (<100 m) ground resolution from space10. However, 
the temporal resolution with the current satellites is less 
appropriate (~30 days) and distortions from surface 
roughness and vegetation in general limit the potential 
operational applications of the method to bare soil  
surfaces16. Further research on the use of multiple polari-
zations, frequencies, incident angles and temporal resolu-
tions may lead to progress17,18. One of the major pro-
blems that is still unsolved is how to extend the remotely 
sensed surface signal (representing at a maximum the top 
5 cm) to the root zone variable, although recent results in 
this field obtained by16,19,20 are encouraging.  
 An additional complication in using the remotely 
sensed soil moisture in hydrological modeling is caused 
by the fact that both the remotely sensed and the mod-
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elled soil moisture are associated with several types of 
uncertainties which have to be accounted for. Data assi-
milation methods offer a way of combining input data 
and simulation results by taking into account their rela-
tive uncertainties, to update the state variable e.g. soil 
moisture with the remote sensed variable21. In this con-
text, field studies can provide information on the natural 
distribution of soil moisture that will be of great impor-
tance for understanding the relationship between natural, 
model estimated and remotely sensed estimates of soil 
moisture distribution. 

Data assimilation 

The goal of data assimilation is to improve the state with 
the help of available measurements. In other words, the 
interest is in obtaining an improved estimate of the state 
ψk, at a fixed time tk, as measurements become available. 
This could be the case, for example, if satellite provides 
indirect measurements of a hydrological variable at time 
tk, the state at time tk can be updated using the measure-
ments up to time tk. The process of updating state at time 
tk using the measurements up to time tk is called filtering. 
If the state at time <tk is updated using the measurements 
up to time tk, this process is called smoothing. Figure 1 
shows the smoothed estimate, analysed estimate ψ a, 
model forecast or first guess ψ f and prediction on time 
line, where measurements are available up to k < 5. 
 Assimilation can be performed in several ways. The 
simplest method is the direct insertion, but it does not 
take into consideration the fact that measured data is 
noisy and it updates state variable only locally where 
measurements are available. It does not update state 
where measurements are not available like in hydrology 
the interest is to update the root zone soil moisture given 
the surface soil moisture. There are several schemes better 
than direct insertion available for data assimilation such 
as 4D-Var, particle filter, Kalman filter, exponential filter, 
etc. Here as an example Kalman filter is illustrated, how-
ever any other filter can be applied in hydrology. 
 
 

 
 
Figure 1. Time line showing the relationship between the a posteri-
ori, a priori, smoothed, and predicted state estimates. [• represents the 
available measurements]. 

Discrete Kalman filter  

The discrete Kalman filter provides a recursive way to  
estimate the state of the process in a way that minimizes 
the mean of the squared error22. It addresses the general 
problem of trying to estimate the state of a discrete-time 
controlled process that is governed by the linear stocha-
stic difference equation given by 
 
 , 1 11 ,t t

k k kk kψ ψ− −−= +G q  (1) 
 
with a measurement that is 
 
 dk = Mkψk + εk. (2) 
 
Here t

kψ  is the n dimensional true state, subscript k de-
notes the time step, Gk,k–1 is the (n × n) dimensional linear 
transition matrix that relates the state at time tk–1 to time 
tk, Mk is the (n × n) dimensional linear transition matrix 
that relates the measurements to state at time tk, qk is the 
n dimensional random vector which represents the pro-
cess noise and εk is the n dimensional random vector 
which represents the measurement noise. These random 
noise vectors are assumed to be independent (of each 
other), white, and Gaussian with mean zero and may be 
written as 
 
 0, ( ) ,f f f T f

ψψ= =q q q C  
 
 = 0, ,T

εεε εε = C  
 
 0.f ε =q  (3) 
 
where overline represents the ensemble average, q f de-
notes the unknown error in the forecast. The best estimate 
of ,t

kψ  written as ,a
kψ  based on the least square error cri-

teria, and assuming a
kψ  as an linear optimal combination 

of the a priori estimated state f
kψ  and the observation dk 

measured at the same time, can be written as 
 
 [ ].f fa

k k kk k kψ ψ ψ= + −K d M  (4) 
 
The forecasted (model) a priori estimate f

kψ  is found by 
propagating 1

a
kψ −  by the system equation. The Kalman 

gain matrix Kk, can be found by minimizing the error co-
variance matrix Cψψ w.r.t. the analysed state ,a

kψ  and can 
be written as 
 
 1[ ] ,T Tf f

k kk kCψψ ψψ εε
−= +K C M M M C  (5) 

 
now Cψψ recursively can be written as: 
 
 [ ] .a f

k kIψψ ψψ= −C K M C  (6) 
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Extended Kalman filter (EKF)  

If the relationship between state at two different time 
steps and between state and measurements at the same 
time step are not linear, there is a need to linearize them 
in order to use the Kalman filter. This linearization can be 
done using Taylor series, around the current estimate us-
ing the partial derivatives of the process and measure-
ment functions to compute estimates even in the case of 
nonlinear relationships. Now process is governed by the 
nonlinear stochastic difference equation which can be  
expressed as 
 
 , 1 11( ) ,t t

k k kk kψ ψ− −−= +G q  (7) 
 
where the random variable q again represents the process 
noise and Gk,k–1(ψ) is the nonlinear model operator. In 
practice of course one does not know the noise at each 
time step. However, one can approximate the state vector 
without this information as 
 
 , 1 1( ).t a

k kk kψ ψ− −= G  (8) 
 
Here 1

a
kψ −  is analysed state at previous time tk–1. If  

governing equations are linearized about forecasted state, 
then the error covariance matrix f

ψψC  at time tk can be 
written as 
 
 , 1 1 1, 1( ) ( ) ( ),Tf a

k k k k qq kk kt t tψψ ψψ− − −−′ ′+ +C G C G C  (9) 
 
where 
 

 
1

, 1
, 1
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.

k

k k
k k

ψ

ψ
ψ

−

−
−

∂′ =
∂

G
G  (10) 

 
It can be understood that in the EKF the distributions (or 
densities) of the various random variables are no longer 
normal after undergoing nonlinear transformation. The 
EKF only approximates optimality by linearization. 

Ensemble Kalman filter (EnKF)  

The ensemble Kalman filter (EnKF) is a suboptimal esti-
mator, where the error statistics are predicted by using a 
Monte Carlo or ensemble integration23. The error covari-
ances can be determined directly from the spread of the 
states in an ensemble at a certain point in time, instead of 
obtaining a value for the error covariance matrix calcu-
lated with an approximate linearized equation. Now the 
model error will be included in the ensemble perturba-
tion, and its covariance is not explicitly needed anymore 
for the propagation of the state error covariances. Hence, 
the error covariance matrices for the predicted and the 

analysed estimate, namely ,f
ψψC  a

ψψC  can be defined in 
terms of the true state as 
 
 ( )( ) ,f f t f t T

ψψ ψ ψ ψ ψ= − −C  (11) 
 
 ( )( ) .a a t a t T

ψψ ψ ψ ψ ψ= − −C  (12) 
 
However, the true state is not known, so the ensemble 
covariance matrices can be defined around the ensemble 
mean ,ψ  
 

 ( ) ( )( ) ,e f f f f f T
ψψ ψ ψ ψ ψ= − −C   (13) 

 ( ) ( )( ) .e a a a a a T
ψψ ψ ψ ψ ψ= − −C   (14) 

 
Here superscript e denotes the estimate based on the  
ensemble integration. The ensemble of observations can 
be generated through the perturbation, expressed as 
 
 dj = dj + εj,  (15) 
 
where j varies from 1 to N, the number of members in the 
ensemble. Next, covariance matrix of the measurements 
can be expressed as 
 
 .e T

ψψ εε=C  (16) 
 
As the ensemble size approaches infinity, this matrix will 
converge to Cεε. Now the Kalman gain can be written as 
 
 1= ( ) [ ( ) ] .T Ta f e f

kk k kψψ ψψ εε
−+K C M M C M C  (17) 

Adaptive filtering  

The estimate of the state depends on error covariance  
matrices of the state and measurements. If the approxima-
tion of the error covariance matrices are not good enough, 
then the assimilation system will perform poorly. The  
approximation could be poor due to linearization of state, 
or finite number of ensembles, or due to change in the 
statistics of the model and measurement errors. The cen-
tral idea behind adaptive filtering method is to update the 
error covariance matrices of the filter, to match the meas-
urements. This is done by analysing the errors between 
the updated state and measurements, and errors between 
the updated estimate and analysed estimate, expressed as 
 
 ,a

k kk kω ψ= −d M  (18) 
 
 ( ).fa

kk k kν ψ ψ= −M  (19) 
 
Here ωk is analysis departure and νk analysis increment24. 
Based on the statistics of the analysis departure and 



SPECIAL SECTION: CIVIL ENGINEERING RESEARCH 
 

CURRENT SCIENCE, VOL. 97, NO. 8, 25 OCTOBER 2009 1199

analysis increment, the error covariance can be updated 
as 
 
 1( ) ( ),e e

k k kt tψψ ψψα+ =C C  (20) 
 
 1( ) ( ),e e

k k kt tεε ψψβ+ =C C  (21) 
 
where α and β are estimated from the statistics of the 
analysis increment and departure24. 

Algorithm testing and field experiments 

In this section the data assimilation theory discussed 
above has been demonstrated using the soil moisture 
model which is a module in DHMs. There are mainly 
three steps involved in this procedure: (i) model calibra-
tion in the watershed, (ii) retrieval of soil moisture from 
the backscatter coefficient, and (iii) assimilating back-
scatter coefficient into the soil moisture model. RS pro-
vides the indirect measurements of surface soil moisture 
(~5 cm), but the presence of surface roughness due to till-
ing practices, scattering by vegetation and type of soil  
affect the backscatter coefficient. To study the perform-
ance of the retrieval algorithm and data assimilation 
scheme in a watershed, for common types of crops and 
soils found in south India, experiments were carried out, 
which would be explained in the subsequent sections. 

The Maddur experimental watershed  

The Maddur watershed (12°30′N and 76°30′E) is located 
in the Kabini river basin approximately 20 km southwest 
of Gundulpet (in the Chamarajanagar district of Karna-
taka) along the National Highway (NH) to Sultan Battery 
(Waynad district, Kerala). The watershed runs along the 
northwest to south east covering a catchment area of 
7.2 km2. The watershed has semi-arid zone climate with a 
mean annual dominant south-west monsoon rainfall of 
800 mm. The watershed is located close to the Bandipur 
National Park as its west boundary. There are mainly 
three types of soils in the watershed comprising black, 
red and rocky/weathered soils, as identified by the geo-
physical studies, which are representative of the soil 
types for granitic/gneissic lithology found in south India. 
Apart from it the stratification in each soil type is ascer-
tained through field pits. The watershed comprises land 
use such as dense/closed forest, scrub forest, land with 
scrub, kharif crop, double crop and plantation classes. 
During kharif and rabi, crops such as marigold, sun-
flower, finger millet, maize, garlic, etc. are grown in 
various plots. The hourly rainfall, 15 min stream gauging 
and 15 min meteorological parameters suitable for com-
puting potential evapotranspiration (PET) are recorded 
continuously through instrumentation installed in the  

watershed. The depth-wise soil moisture data was col-
lected at three locations in all the three types of soils up 
to a depth of 2 m with sampling at depths of 10, 30, 50, 
70, 90, 110, 130, 150, 170 and 190 cm.  

Soil moisture model  

Flow in the unsaturated porus media can be described by 
Darcy’s law. Insertion of Darcy’s law into continuity 
equation leads to the well-known Richards’ equation25. In 
one dimension it can be expressed as 
 

 ( ) 1 ,hK h S
t z z
θ∂ ∂ ⎛ ∂ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

 (22) 

 
where θ is volumetric soil moisture content, z the eleva-
tion relative to a plane (positive downward), K the hy-
draulic conductivity, h the pressure head, S the sink term 
to account for root water uptake and t is time. Analytical 
solution of this nonlinear partial differential equation for 
the field boundary conditions is not available. So one has 
to discretize the equation into space and time using either 
finite difference or finite element methods. A soil mois-
ture model based on the finite element method has been 
developed in the MATLAB using the pde (partial differ-
ential equation) toolbox. The model has been tested with 
the standard numerical solution available for infiltration 
and exfiltration dynamics in the presence of stratified soil 
layers. The generalized likelihood uncertainty estimation 
(GLUE) technique has been used for the calibration of the 
model. This approach allows for the possible equifinality 
(non-uniqueness, ambiguity or nonidentifiability) of  
parameter sets during the estimation of model parameters 
(inverse problem) in the overparameterised models26. 
Figure 2 shows the simulated and measured soil moisture 
profiles for various soils. 

Data assimilation  

To explore the capability of data assimilation in retriev-
ing the root zone soil moisture from surface soil mois-
ture, one synthetic experiment has been performed. In the 
synthetic experiment, the soil moisture is simulated for 
200 days with synthetic parameters along with measured 
forcing (precipitation and potential evapotranspiration) in 
the field. Errors with normal distribution (mean zero and 
std. 2.5) are added to the simulated soil moisture to in-
corporate the effect of measurement error. Now with this 
noisy surface soil moisture, attempt has been made to re-
trieve the root zone (at 60 cm depth) soil moisture. Figure 
3 shows the retrieved soil moisture at 20 and 60 cm depth 
with an assimilation frequency of 1, 12, 24 and 72 h. As 
can been seen from Figure 3, the retrieved root zone soil 
moisture is able to capture the dynamics but shows a bias 
with the actual truth. Generally data assimilation schemes 
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Figure 2. Simulation of soil moisture at A1 (black soil), A2 (red soil) and A3 (weath-
ered soil). (Time 0 h – 10 October 2007, 00:00:00; Simulated (solid line), confidence in-
terval (dashed line) and measured (filled circle)). 

 
 

Table 1. Date, beam and incidence angle range for satellite images 

Date  Beam  Incidence angle range (degree) 
 

13 August 2008   IS6     39.1–42.8 
20 August 2008   IS1     15.0–22.9 
01 September 2008   IS6     39.1–42.8 
05 September 2008   IS1     15.0–22.9 

 
perform well in the case when measurements are given at 
some points well distributed in the model space. However 
in the present case since the measurements are only pro-
vided at the top boundary, results in a bias. 

Surface soil moisture from RS  

To study the retrieval algorithms of soil moisture from 
RS, 25 plots had been selected for monitoring soil moi-

sture. These plots were in different types of soil, having 
different types of vegetation like marigold, sunflower, 
finger millet, maize, garlic, etc. and some were bare. Four 
campaigns have been carried out, to measure the surface 
soil moisture, soil roughness, water content in plants,  
simultaneously with the satellite pass. The satellite data 
were of ENVISAT with two polarizations HH and VV. 
Table 1 shows the details of the satellite images. 
 The first-order solution of the radiative transfer equa-
tion through a weak medium, neglecting the multiple 
scattering is called as ‘water-cloud’ model27. In this, 
backscattering is expressed as a linear combination of 
backscattering by vegetation and backscattering by soil, 
expressed as 
 

 00 2
0 veg soil ,σ σ τ σ= +  (23) 
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where 0
soilσ  is the backscattering by the underlying soil 

and 0
vegσ  is the backscattering by the vegetation,  

expressed as 
 
 0 2

veg cos (1 ),Aσ θ τ= −  (24) 

and τ 2 is the attenuation by the vegetation layer, 

 τ 2 = exp(–2Bmv/cos θ). (25) 
 
The effect of the vegetation on the backscattered signal is 
thus represented by a single canopy variable, the water 
content of the canopy mv (kg H2O/m2) and by two para-
meters, A and B, that are usually obtained from experi-
mental data. The underlying soil contribution 0

soilσ  can be 
evaluated from a surface scattering model or, more sim- 
 
 

 
 
Figure 3. Rain and soil moisture at surface, 20 and 60 cm as retrieved 
by the ensemble Kalman filter. 
 
 

 
 
Figure 4. Observed vs calculated backscatter coefficient on date  
13 August 2008. 

ply, from a linear function of its surface soil moisture ms, 
expressed in dB units as28,29 
 
 0

ssoil .C Dmσ = +  (26) 
 
Here the parameters A and B are obtained from the ex-
perimental data, are kept constant for the dates 13 August 
2008 and 20 August 2008, and for 1 September 2008 and 
5 September 2008, assuming the small variations in the 
vegetation during this period. However, the parameters 
are different for the first and last two dates. The soil para-
meters C and D are also obtained from the experimental  
 

 
 
Figure 5. Observed vs calculated backscatter coefficient on date  
20 August 2008. 
 

 
 
Figure 6. Observed vs calculated backscatter coefficient on date  
1 September 2008. 
 

 
 
Figure 7. Observed vs calculated backscatter coefficient on date  
5 September 2008. 
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data, which are kept constant for the entire period. The 
model shows a good relationship (RMSE (root mean 
squared error) < 1.8 db) between simulated backscatter 
coefficient and that estimated from the field experiments. 
Hence using this calibrated model, it is feasible to simu-
late the surface soil moisture for the entire watershed dur-
ing the satellite pass. This surface soil moisture can be 
assimilated into the DHM to calibrate the model with the 
measured runoff in the watershed. 

Conclusion 

The data assimilation algorithms based on filtering methods 
have been summarized to incorporate RS data into hydro-
logical models, especially when model and measurement 
equation are nonlinear. Application of the data assimila-
tion algorithm has been shown for the retrieval of root 
zone soil moisture from noisy measurements of surface 
soil moisture. Though the predicted root zone soil moisture 
is able to capture the dynamics, a bias is observed. Updat-
ing frequency has no effect on the simulations. There is a 
need to remove this bias from the root zone soil moisture. 
The way to remove this bias can come either from the 
quasi-measurements of root zone soil moisture or any 
other hydrological variable that has information about the 
root zone soil moisture. The quasi-observation could be 
the root zone soil moisture under steady state condition of 
model for the given fluxes. Other remote sensing based 
variable such as vegetation indices (e.g. NDVI, TDVI) 
can be assimilated into the hydrological model, since 
vegetation indices are representative of soil moisture in 
the root zone. 
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