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Abstract

Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of
the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human
protein-protein association network built upon the integration of chemical toxicology and systems biology. This
computational systems chemical biology model reveals uncharacterized connections between compounds and diseases,
thus predicting which compounds may be risk factors for human health. Additionally, the network can be used to identify
unexpected potential associations between chemicals and proteins. Examples are shown for chemicals associated with
breast cancer, lung cancer and necrosis, and potential protein targets for di-ethylhexyl-phthalate, 2,3,7,8-tetrachlorodiben-
zo-p-dioxin, pirinixic acid and permethrine. The chemical-protein associations are supported through recent published
studies, which illustrate the power of our approach that integrates toxicogenomics data with other data types.
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Introduction

Humans are daily exposed to diverse hazardous chemicals via

skincare products, plastic cups, computers and pesticides to

mention but a few sources. The potential effect of these

environmental compounds on human health is a major concern

[1–2]. For example chemicals such as phthalate plasticizers have

been widely linked to allergies, reproductive disorders and

neurological defects. Humans are intentionally exposed to drugs

used for treatment and cure of diseases. Many drugs affect multiple

targets and may interact or affect the same proteins as

environmental chemicals [3–5]. The mechanism of action of

these small molecules is often not completely understood and can

be associated to adverse and toxic effects through for example

drug-drug interactions [6]. There is thus a need to improve our

understanding of the underlying mechanism of action of chemicals

and the biological pathways they perturb to fully evaluate the

impact of small molecules on human health.

An essential step towards deciphering the effect of chemicals on

human health is to identify all possible molecular targets of a given

chemical. Various network-oriented chemical pharmacology

approaches have been published recently to identify novel protein

candidates for drugs, using structural chemical similarity [7–10].

For example Keiser et al. [8] applied network analysis to drugs and

their targets. The authors identified unexpected molecular targets

such as muscarinic acetylcholine receptor M3, alpha-2 adrenergic

receptor and neurokinin NK2 receptor for methadone, emetine

and loperamide, respectively. Additionally, recent studies have

demonstrated that chemicals could be classified based upon their

effect on mRNA expression detected by microarrays [11–12].

Lamb et al. showed that genomic signatures could be used to

recognize drugs with common mechanism of action allowing

discovery of unknown modes of action. Despite the explosion of

chemical-biological networks, the chemical toxicity remains a

major issue in human health. Analysis of environmental chemicals

with similar gene expression profiles is still lacking. With the recent

advances in toxicogenomics, information on gene/protein activity

in response to small molecule exposures becomes more available.

This provide necessary data to develop computational systems

biology models to predict both high level associations (linking

chemical exposures to diseases) and more detailed associations

(linking chemicals to proteins)

In this paper we present a method that can associate chemicals

to disease and identify potential molecular targets based on the

integration of toxicogenomics data, chemical structures, protein-

protein interaction data, disease information and functional

annotation. The core of our procedure is derived from the ‘‘target

hopping’’ concept defined previously [3]. But instead of consid-

ering only binding activity, we extended the concept to gene

expression. If two proteins are affected with two chemicals, then

both proteins are deemed associating in chemical space. Our

approach is not only a statistical model but mimics the true

biological system by constructing a network of associations

between human proteins defined as Protein-Protein Association
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Network (P-PAN). We have validated our network by comparison

with two high confidence protein-protein interaction (PPI)

networks, and by assessing the functional enrichment of clusters

in the network generated. The P-PAN revealed both known as

well as many novel surprising connections between chemicals and

diseases or proteins. We provide literature support for some of the

unexpected associations, such as the connection between diethyl-

hexylphthalate (DEHP) and gamma-aminobutyric acid A receptor

beta target [13], as well as between apocarotenal, a chemical

found in spinach, and necrosis. This illustrates the usefulness of an

approach that integrates toxicogenomics data with other diverse

data types.

Results

Based on the Comparative Toxicogenomics Database (CTD)

[14], we constructed a human P-PAN. A workflow of the strategy

is shown on Figure 1. We extracted 42,194 associations between

2,490 chemicals and 6,060 human proteins from the CTD. We

mapped compounds to chemical structures from PubChem and

extracted their indication of use from Medical Subject Headings

(MeSH, http://www.nlm.nih.gov/mesh/MBrowser.html) to clas-

sify them as either drugs (MeSH: ‘‘Pharmaceutical Actions’’) or

environmental chemicals (MeSH: ‘‘Toxic Actions’’ and ‘‘Specialty

Uses of Chemicals’’).

In the CTD, drugs and environmental compounds are claimed

to be associated with toxicologically important proteins. To

estimate how much the information from the CTD differs from

available data on pharmacological action of drugs, we compared

the data shared between CTD and DrugBank, as of May 2009

[15]. DrugBank is a repository of pharmacological action for

‘Food and Drug Administration’ approved drugs. From the 1358

drugs gathered in DrugBank, 420 drugs matched in CTD.

Interestingly, whereas 1403 proteins are associated to these drugs

in DrugBank, only 194 proteins are found in both databases. For

example, according to Drug Bank celecoxib, a known non-

steroidal anti-inflammatory drug, is associated to two metabolizing

enzymes: the Cytochrome P450 2C9 (CYP2C9) and the

Cytochrome P450 2D6 (CYP2D6) and to two drug targets: the

Prostaglandin G/H synthase 2 (COX-2) and the 3-phosphoino-

sitide-dependent protein kinase 1 (PDPK1). In the CTD, celecoxib

is linked to 33 human proteins including CYP2C9 and COX-2.

The toxicity information extracted from CTD is relatively

different to the known pharmacological action of drugs and

should be considered as a complementary source of information.

Structure-target relationship
To investigate the assumption that two compounds sharing similar

structure can potentially affect the same molecular targets, we

compared chemical properties of the compounds collected from the

CTD. The chemicals were characterized by 50 properties calculated

from the structure, including the molecular mass and affinity for a

lipid environment. The distribution of properties, as it appears in a

multi-dimensional properties space, was projected and visualized in

two dimensions using principal component analysis (PCA) (shown in

Figure 1). There is substantial overlap in the PCA projections

between environmental chemicals and drugs indicating that they can

potentially affect the same protein targets. We also compared the oral

bioavailability profiles of compounds based on standard Lipinski [16]

and Veber [17] rules. Again, overlaps were observed, indicating that

environmental chemicals mimic drug properties (see Figure S1).

These results confirm that it is reasonable to generate a network by

integrating toxicogenomics knowledge from both drugs and

environmental compounds, as they share many properties.

Generating a high confidence human Protein-Protein
Association Network

The human P-PAN was generated based on the assumption that

if two proteins are biologically affected with the same chemicals

(defined as shared chemicals), they are likely to be involved in a

common mechanism of action of the chemicals. Then, two

proteins are connected to each other if they are linked to the same

chemical in the CTD. The resulting P-PAN consists of 2.44

million associations. To reduce noise and select the most

significant associations, we assigned two reliability scores to each

protein-protein association: a score based on hypergeometric

calculation and a weighted score. The weighted score was

calculated as the sum of weights for shared chemicals, where

weights were inversely proportional to the number of associated

proteins for a given compound.

We went one-step further and compared the P-PAN with two

human PPI databases: (1) a high confidence set of experimental

PPIs extracted from a compilation of diverse data sources [18] and

(2) PPIs based on an internal consistent single data source [19].

Our P-PAN performed well compared to both PPIs. Based on the

calibration curves (Figure S2), we considered a threshold that

capture good overlaps between our P-PAN and the PPI networks

for different reliability scores thus reducing our P-PAN to

,200,000 reliable associations. Using this approach, the molec-

ular target predictions are limited to the 3,528 proteins present in

the P-PAN. To confirm that biological information is not lost

when selecting only 8% of the entire P-PAN, we compared

functional enrichment for the complete network (6,060 proteins)

and for the high confidence sub-network (3,528 proteins) using

Gene Ontology (GO) [20]. For example cell proliferation (p-values

of 3.22e-36 and 1.46e-27 for the large network and the sub-

network, respectively) and protein binding (p-values of 1.2e-72 and

4.13e-47 for the large network and the sub-network, respectively)

were the most overrepresented terms.

Since proteins tend to function in groups, or complexes, an

important step has been to verify that our high confidence network

mimics true biological organization. This task is commonly

Author Summary

Exposure to environmental chemicals and drugs may have
a negative effect on human health. An essential step
towards understanding the effect of chemicals on human
health is to identify all possible molecular targets of a
given chemical. Recently, various network-oriented chem-
ical pharmacology approaches have been published.
However, these methods limit the protein prediction to
already known molecular drug targets. New findings can
for example be made by using high-confidence protein-
protein association databases. Here, we describe a generic,
computational systems biology model with the aim of
understanding the underlying molecular mechanisms of
chemicals and the biological pathways they perturb. We
present a novel and complementary approach to existing
models by integrating toxicogenomics data, chemical
structures, protein-protein interaction data, disease infor-
mation and functional annotation of proteins. The high
confidence protein-protein association network proposed
reveals unexpected connections between chemicals and
diseases or human proteins. We provide literature support
to demonstrate the validity of some predictions, and
thereby illustrate the power of an approach that integrates
toxicogenomics data with other data types.

PPA Network using Toxicogenomics Data
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executed using graph clustering procedures, which aim at

detecting densely connected regions within the interaction graph.

Two clustering methods have been applied to our network. The

molecular complex detection (MCODE) approach [21] that allows

multiple clusters assignation for a protein, mimicking the reality as

a protein can participate in several complexes simultaneously. On

the other hand, the markov cluster algorithm (MCL) [22] which

assign one protein to a unique cluster has been shown to be

superior to other graph clustering methods in recent studies [23–

24]. Applied on our network, MCODE extracted few large core

clusters and several tiny clusters (possibly singleton clusters). The

MCODE approach results in a clustering arrangement with a

weak cluster-wise separation. Compared to MCL, MCODE

yielded a lower number of clusters, with a higher number of

proteins per cluster. Only 35 clusters varying in size from five to

845 proteins were extracted. Using the MCL algorithm we

obtained a more heterogeneous separation with 58 clusters varying

in size from five to 462 proteins. Therefore, to identify the

Figure 1. Workflow of the strategy for generating a human P-PAN and predicting novel associations. DATA: Extraction and filtering of
human protein-chemical associations from CTD. The visualization of the chemical space by Principal Component Analysis projection confirms that
drugs (D) and environmental chemicals (E) shared structural properties, and then may affect similar protein targets. The two first principal
components, which explained about 44% of the variance on the calculated properties are shown (green: pharmaceutical actions, red: toxic actions
and blue: specialty uses of chemical). All proteins (P) were mapped to Ensembl gene identifiers to facilitate further data integration. MODEL
GENERATION: Construction of the P-PAN. The P-PAN was created from associations present in the CTD (dashed edge lines) between chemicals and
proteins. In the P-PAN, two proteins are connected to each other (edge lines) if they share a common chemical. A weighted score, represented by the
width of the black edges, was assigned to each protein-protein association. It represents the strength of the network between two proteins as
defined by the number of shared compounds for both molecular targets. Selection of a scoring function and a high confidence P-PAN after overlaps
comparison with two human interactomes (PPIs) based on experimental evidences. Clustering of the P-PAN and evaluation of the biological
meaningful of the clusters using Gene Ontology annotations. PREDICTION: (1) Prediction of novel molecular targets for chemical using a neighbor
protein procedure. DEHP (orange) is known to be connected with blue proteins and is predicted to be associated with green proteins. A confidence
score was calculated for each protein, represented by the width of the edges; thick edge for high score to thin edge for low score. (2) Prediction of
disease associated with chemical after integration of protein-disease information using GeneCards in clusters. As example, apocarotenal, a compound
found in spinach is predicted to be link to necrosis.
doi:10.1371/journal.pcbi.1000788.g001

PPA Network using Toxicogenomics Data

PLoS Computational Biology | www.ploscompbiol.org 3 May 2010 | Volume 6 | Issue 5 | e1000788



biologically meaningfulness of our network, we used complexes

extracted using the MCL method. Each cluster was then

investigated for functional enrichment based on GO terms. To

ensure the high quality of functional annotations we used only

annotations experimentally supported or with traceable references.

Hypergeometric testing was used to determine GO functional

annotation overrepresented amongst each cluster. The two top

scoring molecular functions found were heme binding (p-value of

6.60e-25, cluster 4) and glucuronosyl transferase activity (p-value

of 2.34e-21, cluster 12). Regulation of apoptosis (p-value of

1.67e.17, cluster 2) and oxidation reduction (p-value of 6.67e-14,

cluster 4) were the most highly enriched categories in the biological

process branch of the GO. This analysis thus confirms that clusters

in the network, and therefore the proteins associated with each

other, are functionally coherent. This was further evidence that the

organization of the network is meaningful.

Diseases associated to clusters
In the clusters of the P-PAN, proteins are more connected with

other proteins within the cluster than with the other targets in the

network. As proteins are associated based on their shared

relationship with chemicals, proteins within a given cluster tend to

be more linked to specific compounds. It is thus possible to find

associations between diseases and the chemicals that underlie the

protein-protein associations within the cluster using protein-specific

disease annotations. For each cluster, we investigated if specific

disease annotation was found more frequently than expected by

using protein-disease information [25]. We identified several

diseases associated with specific clusters. These included the two

most common types of cancer, breast cancer (cluster 1, p-value of

9.67e-18) and lung cancer (cluster 12, p-value of 4.84e-12), as well as

necrosis (cluster 2, p-value of 2.26e-12), ichthyosis (a skin disorder

associated to cluster 4, p-value of 1.41e-5), retinoblastoma (cluster 7,

p-value of 9.46e-8) and inflammation (cluster 8, p-value of 1.55e-5).

Mining the network for chemicals associated with
disease

To predict which chemicals may affect human health, we then

analyzed selected clusters to identify new chemical-disease

associations (see Table 1). When linking diseases to compounds,

it is important to keep in mind that there is no direction in the

association, i.e. it is not possible from the network to separate

positive from negative associations between a chemical and a

disease. Discriminating between whether a compound prevents or

causes disease requires manual interpretation of the association.

One of the clusters showed high enrichment for breast cancer.

The most significantly associated chemicals are already known

from the literature to be related to cancer, thus supporting the

clustering quality of the P-PAN. Among the most significantly

associated chemicals are the well-known polychlorinated biphenyls

(PCBs). PCBs are used for a variety of applications i.e. flame

retardants, paints and plasticizers. After being banned due to their

toxicity, they still persist in the environment. Previous results

suggest that specific PCBs may indeed be associated with breast

cancer [26]. Several organizations (EPA, IARC) have classified

PCBs as probable human carcinogens. When we inspected

another cluster highly connected to lung cancer using our P-

PAN method, thimerosal, dinitrochlorobenzene (DNCB) and

styrene were significantly associated with this cluster. Thimerosal

and DNCB are not known lung cancer-causing chemicals, while

the last compound, styrene has been classified as a possible

carcinogen. Thimerosal is an organomercury chemical widely

used as preservative in health care products and in vaccines. It

may have possible adverse health effects such as a role in autism

and in nervous system disorders [27] as well as possible gene-toxic

effects to human lymphocytes [28]. No study has previously

related it to lung cancer. The second chemical DNCB is known to

be a skin allergen that may cause dermatitis. Genes associated with

allergies were shown to be up regulated in rat lung tissue after

DNCB exposure [29], but no direct link to lung cancer has been

demonstrated so far. Another interesting finding is the association

between apocarotenal and necrosis. Apocarotenal, a natural

carotenoid found in spinach and citrus, is used as a red-orange

coloring agent (E160E) in foods, pharmaceuticals and cosmetics

products. No direct evidence has been found that links

apocarotenal to necrosis. However, in vitro and in vivo studies

[30] have suggested that spinach may be a good anti-cancer agent.

This is in line with epidemiologic studies that have shown that

those who consume higher dietary levels of fruits and vegetables

have a lower risk of certain types of cancer [31] due to the

presence of carotenoids. Furthermore, carotenoids have been

defined as chemopreventive agents [32]. Studies have established

associations between carotene and beta-carotene with reduced risk

of prostate cancer [33] or breast cancer [34]. The prediction that

apocarotenal is positively associated to necrosis and could prevent

certain types of cancer is thus indirectly supported by other studies.

The other chemicals significantly associated to disease (Table 1)

are discussed in the supplementary text (see Text S1).

Predicting novel molecular targets for chemicals
Besides revealing disease-chemical associations, the network can

be used to predict novel targets for chemicals. It has been shown

that many small molecules affect multiple proteins rather than a

single target, and that proteins sharing an interaction with a

Table 1. Mining the P-PAN for chemicals associated with
breast cancer, lung cancer and necrosis, using a clustering
procedure.

Cluster ID Disease Chemical name p-Value

1
(462 proteins)

Breast cancer
(128 proteins)

estradiol 7.68e-134

bisphenol A 4.46e-92

PCBs 1,15e-88

genistein 2.20e-78

fulvestrant 7.05e-63

12
(59 proteins)

Lung cancer
(29 proteins)

thimerosal 1.57e-26

(10 proteins)

DNCB 3.29e-22

(12 proteins)

styrene 7.78e-06

2
(433 proteins)

Necrosis
(122 proteins)

arsenic disulfide 4.76e-35

apocarotenal 1.63e-29

(8 proteins)

doxorubicin 2.66e-26

Chemicals already known from the literature to be associated to disease are
shown in italic. In bold are the chemicals significantly associated to disease,
which are unknown to be disease-causing chemical from the literature. The
number of proteins is shown in brackets for each cluster, disease and novel
association. As example, among the 433 proteins associated to cluster 2, 122
are known to be linked to necrosis. Among these 122, 8 are connected to
apocarotenal in CTD.
doi:10.1371/journal.pcbi.1000788.t001

PPA Network using Toxicogenomics Data
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chemical are targeted by the same chemicals [8]. Based on the

CTD data available, strong promiscuities between some proteins

exist. For example, more of 25% of chemicals annotated to

estrogen receptor 1 (ESR1) affects also progesterone receptor

(PGR). In the same order, cytochrome p450 2D6 (CYP2D6) and

cytochrome p450 2C9 (CYP2C9) shared one-third of their

respective associated compounds. By the term ‘‘affected’’, we

consider effects such as up regulated, down regulated, agonist,

antagonist and inhibitor. Then, our network can not be used to

identify chemical synergies or opposite effect on proteins. Thus, if

two proteins are affected by two chemicals and one of the proteins

is further deregulated by an additional chemical, then it might be

that both proteins are in fact deregulated with the same three

chemicals. Based on this assumption and in order to suggest novel

associations between chemicals and proteins, a neighbor protein

procedure was used which scored the association between each

protein and each chemical (see Materials and Methods). Molecular

targets known to be associated with a chemical were extracted

from the CTD, and the P-PAN was scanned for proteins

associated with a high score. The significance of enrichment was

calculated by random testing (for the confidence scores see Text

S2), and sub-networks were subsequently ordered according to

their significance. Four examples of various chemicals are

presented in Table 2 (other case stories are shown in Table S1).

To estimate the performance of our approach for approved drugs,

we analyzed the level of recall and precision obtained for the 420

common drugs between DrugBank and CTD. We obtained a

recall and a precision of 5.91% and 3.77% respectively,

corresponding to the percentage of interactions in DrugBank

retrieved and percentage of interactions in DrugBank from all

interactions predicted obtained from CTD data and from the

neighbor protein procedure. These values illustrate that informa-

tion between the two data sources are relatively different.

Examples of proteins associated to chemicals
Phthalates, mainly used as plasticizers, have received a lot of

attention as environmental compounds because they are potential

human carcinogens. As there are many phthalates, we focused on

Di-EthylHexyl Phthalate (DEHP) that has been associated with

more proteins compared to other phthalates such as additional

information on kinases (e.g. mitogen-activated protein kinase 1, and

mitogen-activated protein kinase 3) [35]. DEHP is widely used due

to its suitable properties and low cost, and is present in the general

environment at high levels. Exposure to DEHP is of particular

concern with regard to developing fetuses where it is believed to

cause malformation of reproductive organs and neurological defects

[36]. Using our approach, several proteins were identified as being

associated with DEHP (Table 2). Cysteine dioxygenase type I

(CD01) and peroxisome proliferator-activated receptor alpha

(PPARA), the two top scoring proteins, are already known in the

CTD and from the literature [37–38] as molecular targets for

DEHP. Six other high ranking proteins are new potential DEHP

molecular targets which are not recorded in the CTD (thus not input

data). Among them, four gamma-aminobutyric acid A (GABA)

receptors were predicted as potential DEHP molecular targets.

These associations are supported by a recent study showing that

DEHP can modulate the function of ion channels as GABA

receptors in a manner similar to volatile anesthetics in experiments

on expressed receptors [13]. This makes sense because the GABA

neurotransmitter system has been implicated in the pathogenesis of

bipolar disorders (neurological disorders) via gamma-aminobutyric

acid receptor subunit alpha-1 (GABAa1) [39], and DEHP is also

associated with neurological defects [36]. In addition to GABA

receptors, we identified several other candidates including proopio-

melanocortin (POMC) and a cytochrome P450 (CYP3A11)

(discussed in the Text S2). We looked at another environmental

chemical, the 2,3,7,8-TetraChloroDibenzo-p-Dioxin (TCDD),

which originates from burning or incineration of chlorinated

industrial compounds. TCDD is believed to cause a wide variety

of pathological alterations, with the most severe being progressive

anorexia and body weight loss [40]. TCDD is also known to be a

neurotoxin leading to neurodevelopmental and neurobehavioral

deficits [41–42], and accumulating in the brain as well as other

organs [43]. We identified six proteins associated with TCDD that

are not recorded in the CTD for human (Table 2). Among them five

are supported by literature (see Text S2). This included protein

kinase C elipson (PRKCE), known to be involved in brain tumors

Table 2. Predicting novel molecular targets for chemicals.

Chemical
Known
protein Cpscore*

Novel
protein Cpscore*

Liter-
ature

DEHP CDO1 13.23 GABAß1 5.46 Yes

PPARA 9.48 POMC 5.44 Yes

SUOX 4.35 CYP3A11 5.40 Yes

(15 proteins) GABAß2 4.32 Yes

GABAc2 4.32 Yes

GABAa1 4.26 Yes

TCDD HSPA9B 82.69 PRKCE 10.17 Yes

SLC2A4 82.69 POMC 8.97 Yes

TRIP11 82.69 CPT1A 6.96 Yes

TSP1 82.69 HSD11B1 6.39 Yes

EPHX2 75.77 MVP 6.77 No

MT2A 10.85 APOB 5.61 Yes

(90 proteins)

PA CYP4X1 5.67 CHST1 5.19 No

PPARA 2.53 CHST4 5.19 No

CES1 1.45 CST 3.19 Yes

SULT2A1 0.87 ABCG5 2.61 No

CYP1A1 0.37 C3 2.80 Yes

ADRA2A 1.34 Yes

CYB5A 1.21 No

ADRA1A 1.08 Yes

CRHR2 1.04 No

CYP2A13 0.93 No

ALDH3 0.91 Yes

(5 proteins)

Permethrin AR 4.67 CYP2B1 4.43 Yes

WNT10B 4.12 SHBG 3.51 Yes

PGR 3.75 CYP2B6 2.89 No

ESR1 3.31 NR1I3 2.64 Yes

TFF1 3.15

NR1I2 2.94

(17 proteins)

*Proteins known to be associated to a compound were extracted from the CTD.
In brackets is the total number of known proteins used to query the P-PAN. To
find novel protein targets (in bold) associated to a chemical, a neighbor
proteins procedure was used which scored the association between proteins
and chemicals (cpscore). Among the novel predicted proteins (thus not input
data), some are supported by literature, highlighting the usefulness of the P-
PAN to identify new chemical-protein associations.
doi:10.1371/journal.pcbi.1000788.t002

PPA Network using Toxicogenomics Data
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[44], carnitine palmitoyltransferase I (CPT1A), 11b-hydroxysteroid

dehydrogenase type 1 (HSD11B1) and apolipoprotein B (APOB)

which are all linked to obesity [45–47]. Furthermore, we investigated

in detail the drug pirinixic acid (PA) (also named WY14,643), which

is a peroxisome proliferator-activated receptor (PPAR) agonist with

strong hypolipidemic effects. PA was never approved for clinical use

due to hepatocarcinogenesis adverse effect shown in animal studies

[48]. To date there is no evidence that PA promotes carcinogenesis

in humans [49], and this has spurred new studies for identifying

cellular processes that are capable of responding to PA. Among 11

molecular targets identified and not recorded in the CTD (Table 2),

only five are supported by the literature (see Text S2). For example

the expression of the C3 protein, an acylation stimulating protein

involved in necrosis and afibrinogenemia (blood disorders), has been

shown to be affected by PA in rats [50]. Finally we studied proteins

associated with permethrin in more detail. Permethrin is a widely

used insecticide, acaricide and insect repellent, classified by the US

EPA as a likely human carcinogen, but still used in healthcare for the

treatment of lice infestations and scabies. Four proteins not recorded

in the CTD were identified as associated with permethrin. Three of

them are supported by literature (see Text S2 for details) including a

cytochrome P450 (CYP2B1) [51–52] and sex hormone-binding

globulin (SHBG) [53], which are proteins linked to the endocrine

system. These findings suggest a mechanism by which chronic

exposure of humans to pesticides containing this compound may

result in disturbances in endocrine effects related to androgen action.

The examples we provide include both known and new protein

associations with a given chemical, and many of the novel

associations are supported by the literature. We compared our

approach with STRING (version STRING 1) [54] a high-

confidence protein-protein association network, to see if the

findings generated by the current approach are also found by

other existing methods. The STRING network includes direct

(physical) and indirect (functional) associations derived from

diverse sources as genomic context, high throughput experiments,

co-expression and literature. As a test example, we used the 15

proteins associated with DEHP in the CTD to query the P-PAN

by a neighbor protein procedure. The same 15 proteins were also

used to query the STRING network. Subsequently we compared

the predicted molecular targets between the two networks (P-PAN

and STRING). In the resulting STRING network none of the

GABA receptors were found (see Figure S3). The STRING

network showed a clear tendency to associate phthalates with

kinases and nuclear receptors. This example demonstrated that

our approach was complementary to other association approach-

es. This highlights the value of integrating various sources of data

to understand potential toxic effects on human health caused by

chemical exposure.

Discussion

We propose an approach different from existing computational

chemical biology networks, which primarily integrate drugs

information, to identify new molecular targets for chemicals and

to link them to diseases. In our approach we have integrated

toxicogenomics data for drugs and environmental compounds.

The ability to make new findings using a different network is

illustrated by a comparison with a similar method, showing the

capacity of our P-PAN to identify novel chemical-protein

associations. Using phthalate as an example, our model suggests

potential associations between DEHP and GABA receptors, which

have not been predicted previously.

An extension of this network by integrating more data, for

example other chemical-protein associations or dose levels for

which a compound may affect human health, would be beneficial

to the proposed approach. Paracelsus (1493–1541) is often cited

for his quote, ‘‘all things are poisons and nothing is without poison,

only the dose permits something not to be poisonous’’. This

emphasize that the dose of a chemical is an issue to consider in the

deregulation of systems biology. Nevertheless, a global mapping

could allow a better understanding of adverse effects of drugs and

toxic effects of environmental compounds. This could be used as a

new approach for risk assessment and regulatory decision-making

for human health.

Among the examples presented, some predictions are support-

ed by literature for other organisms. Regarding toxicogenomics,

the available human data are generally sparse compared to

rodents. Data on toxicity - adverse effects of chemicals on

humans – can be acquired through epidemiologic studies and

from occupational, accident-related exposures as intentional

human testing of environmental compounds remains limited.

However, differences exist between model animal and human

responses to chemicals, including differences in the type of

adverse effects experienced and the dosages at which they occur.

The differences may reflect variations in the underlying

biochemical mechanisms, in metabolism, or in the distribution

of the chemicals. As an example, bisphenol A (BPA) does not

affect proteins in a similar way across species (Figure 2). In the

human systems studied to date, BPA does not affect the proto-

oncogene c-FOS (FOS) and the mitogen-activated protein kinase

8 (MAKP8) but seems to modify their expression in rodent

species. BPA binds and modifies the activity of the estrogen

receptor alpha (ESR1) in a very conservative way across

organisms [14]. BPA has an ability to function as an estrogen

like receptor (ER) agonist, and thus has the potential to disrupt

normal endocrine signaling through regulation of ER target genes

e.g. androgen receptors, estrogen receptor, progesterone recep-

tors. There is a need to integrate data with cross-species

extrapolation in order to have a more accurate understanding

of the human risk from chemical exposure.

The major limitation of our integrative systems biology

approach is that the molecular target predictions are limited to

the 3,528 proteins present in our P-PAN, which represent only

15% of the estimated human proteome [55]. Hence, the current

lack of high quality data is the limiting factor in approaches such as

the one described here. Today high throughput methodologies

result in available large scale data in both chemical biology and

systems biology, but these data are discipline specific [56]. There is

an evident need for the development of databases [57] to integrate

disparate datasets such as toxicogenomics data in order progress in

systems biology research. In addition, the results of the disease-

compound association analysis will improve in the future as newer,

more complete and curated data will become available.

Materials and Methods

Data set
We downloaded the publicly available Comparative Toxicoge-

nomics Database (CTD) as of June 26, 2008 [14]. The CTD

contains curated information combining drug and environmental

chemical data associated with proteins. We selected 42,194

associations between 2,490 unique compounds and 6,060

molecular targets known to be involved in human disease.

Different associations are presented in the CTD such as ‘‘chemical

x results in increased expression of protein z’’ or ‘‘compound x

binds to protein z’’. Gene expression data are essentially present in

the CTD such as a chemical can increase, decrease or affect a gene

expression. However, only few binding data are present in CTD

PPA Network using Toxicogenomics Data
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and therefore integrated in our network: 3189 in total among the

42,194 associations. Scripts were used to remove associations with

negation such as ‘‘chemical x does not affect protein z’’.

Quality of chemical and protein annotations
To verify the uniqueness of chemicals, chemical names

extracted from the CTD were checked using PubChem (http://

Figure 2. Cross-species comparative toxicogenomics for bisphenol A (BPA). Molecular targets are represented as nodes, and colored by
gene family. Nodes presence represent available information extracted from the CTD and node absence are the unknown information. Colored nodes
defined that BPA affect the protein, while nodes are not colored when BPA does not affect the protein. This figure highlights similarities and
differences existing between animal model and human responses to chemical exposure.
doi:10.1371/journal.pcbi.1000788.g002
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pubchem.ncbi.nlm.nih.gov/) as of June 26, 2008 to avoid

synonymous names for the same compound. The few chemical

names not retrieved via the database were manually verified. To

determine overlaps with protein-protein interaction databases and

facilitate further data integration, the CTD protein names were

mapped to the corresponding Ensembl IDs [58] as of June 26,

2008. Only 1.5% of the 42,194 chemical-protein associations

could not be clearly identified.

Structure-target relationship
To investigate chemical space of drugs and environmental

compounds, 50 two-dimensional properties were calculated for

each structure extracted from PubChem. To visualize them,

principal component analysis (PCA) was performed. All necessary

data were calculated using the MOE software (Chemical

Computing Group version 2007.09)

Generating a high confidence human Protein-Protein
Associations Network

Relevant human chemical-protein associations collected from

the CTD were used to create a P-PAN. The maximum number of

molecular targets assigned to one compound ‘tert-Butylhydroper-

oxide’ was 1,189 and the maximum of chemicals assigned to one

protein, the cytochrome P450 3A4 (CYP3A4), was 276. The P-

PAN was generated by instantiating a node for each protein, and

linking by an edge any protein-protein pair where at least one

overlapping chemical was identified. Scripts were used to convert

the protein-protein associations into a non-redundant list of

associations. If proteins A and B are associated, the network may

have two associations, A–B and B-A. Only one of these

associations was retained in the P-PAN. We assigned two

reliability scores to each protein-protein association: a score based

on hypergeometric calculation and a weighted score. The

weighted score was calculated as the sum of weights for

overlapping compounds, where weights were inversely propor-

tional to the number of assigned proteins. The resulting P-PAN is

a complex structure containing a total of 2.44 million unique

associations between 6,060 human proteins.

Validating the protein-protein association score
The reliability of the weighted score was confirmed by fitting a

calibration curve of different scores against Lage’s PPIs18 (version

2.9) and Vidal’s PPIs19. Only 35,000 high confidence experimental

interactions were extracted from Lage’s PPI, which contains

interactions present in the largest databases (Reactome, KEGG…)

and data inferred from model organisms. Vidal’s PPIs are based

on an internal consistent single data source defined using yeast

two-hybrid system and contains 3111 interactions.The overlaps of

our P-PAN scores and Lage/Vidal PPIs are shown in Figure S2.

The benchmark revealed that the weighted score is superior to a

score calculated as the negative logarithm of p-values from a test in

hypergeometric distribution and a simple overlap count. To

estimate the robustness of the model, four thresholds selected from

the ‘weighted score’ curves (5%, 8%, 12.5% and 17%) of the

complete P-PAN were used to perform prediction for DEHP. At

5%, 73,000 associations between 2105 proteins were extracted.

The number of proteins is relatively stable at 8% and 12.5%.

However, the number of associations increased significantly from

200,080 to 306,000 including lower score associations in the

output file of prediction. The threshold of 17% corresponds to

415,000 associations between 3894 proteins. All thresholds showed

a good prediction with the GABA receptors for DEHP. As the

12% threshold already added some more noise in the prediction,

we decided to not include more proteins, in order to keep the most

significant associations. We then considered a threshold of 8%,

represented by the vertical line in Figure S2, which captured a

good overlap between our P-PAN and the PPI networks. This

selection represents 200,080 associations of the complete P-PAN.

Among the ,200,000 high confidence associations selected,

3,528 proteins were identified, and these were significantly

enriched among the high scoring protein-protein associations as

shown in Figure S2 (861 Lage’s PPI interactions corresponding to

24.4% were found among the top 5% of the high scoring protein-

protein associations). By comparison, only 1,852 of the high

confident interactions from Lage were identified in a random P-

PAN created by node permutation, and no enrichment was seen

for the random network. As example, the selection of high

confidence associations allowed to conserve only 803 proteins from

the 1189 proteins assigned to the ‘tert-Butylhydroperoxide’.

P-PAN clustering
A high confidence sub-network of ,200,000 protein-protein

associations was selected which contained 3,528 proteins. This

sub-network was highly interconnected, with the majority of

proteins belonging to a single large cluster. In order to increase the

resolution and facilitate biological interpretation, two clustering

methods were applied to the sub-network, MCODE [21] and

MCL [22]. We used the default settings for MCODE (fluff option

set to 0.1, mode score cutoff set to 0.2, degree cutoff set to 2), and

obtained 35 clusters. One major drawback of this algorithm is that

not all the proteins in the network were clustered. We used the

MCL algorithm with scheme and granularity parameters set to 7

for highest performance and granularity. With the MCL approach

we identified a total of 58 clusters as strongly interconnected, with

a minimum size of 5 proteins. These clusters were linked together

into a new network consisting of a scored cluster-cluster

association network. The association score between each cluster

pair was calculated from the mean of the P-PAN between each

pair of clusters. Each cluster was investigated for functional

analysis based on the three Gene Ontology categories (a)

molecular function, (b) biological processes, and (c) cellular

components as of January 2009. To reduce the noise and improve

the quality of the functional annotation, we only used the

functional annotation if it was experimentally supported or had

traceable references. The following GO evidence codes were

allowed: IMP (Inferred from Mutant Phenotype), IGI (Interfered

from Genetic Interaction), IPI (Inferred from Physical Interac-

tions) and IDA (Inferred from Direct Assay) and TAS (Traceable

Author Statement). At time of use the molecular function category

contained 5,981 proteins, the biological processes category 5,196

proteins, and the cellular components 5,151 proteins. We

compared human proteins present in GO categories with proteins

extracted from the CTD; 14.3% of the CTD proteins could not be

annotated for the molecular function, 16.6% for biological

processes and 14.9% for cellular components.

To identify chemicals associated with disease, protein-specific

information such as involvement in disease was integrated in each

cluster. The Online Mendelian Inheritance in Man database

(OMIM) [59] (July, 2009) and the GeneCards database [25]

(February, 2008) were considered as sources of protein-disease

connections. Various clusters were investigated. For example, cluster

1 contained 462 proteins. Using GeneCards, 269 proteins were

retrieved with disease annotations. Amongst these 269 proteins, 128

were associated to breast cancer (with give a p-value of 9.67e-18 for

breast cancer to cluster 1). Using OMIM, only 90 proteins among the

462 were retrieved with disease annotations. Looking at the cluster

enrichment with OMIM, we obtained at the top a non significant p-

PPA Network using Toxicogenomics Data
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value of 0.0048 (corresponding to two proteins for paget disease of

bone). As another example, we analyzed the second cluster. Cluster 2

contained 433 proteins. 281 proteins were annotated to diseases in

Genecards, for only 78 proteins in OMIM. Additionally, cluster 2 has

a significant p-value of 2.26e-12 using GeneCards information for

necrosis. According to these results we decided to use GeneCards as a

source of protein-disease relationships. To avoid too many false

positive from Genecards, we set a significance cut-off value of the

GeneCards-AKS2 score based on a comparison with OMIM. This

was done by overlapping common protein-disease associations from

Genecards against OMIM (see Figure S4). The protein-disease

connections were kept with a minimum AKS2 score of 60 and p-

values were calculated for each disease present in clusters. Then,

chemical information from the CTD was integrated with each cluster

and p-values were assigned to each chemical. All p-values obtained

were calculated using hypergeometric testing, and were corrected for

multiple testing with Bonferroni correction [60]. The significance

cutoff for the corrected p-values was set to 0.05.

Neighbor protein procedure
To predict molecular targets for a chemical, a network-neighbor’s

pull down was done in a three steps procedure: (1) Selection of the

input protein(s): Extraction of the protein(s) known to be associated

with the selected chemical from the CTD. (2) Identification of

network(s) surrounding the input proteins by a neighbor proteins

procedure. In this procedure, our P-PAN was queried for the input

proteins, and associations between these were added. Next, the first

order interactors of all the input proteins were queried and added.

For each neighbor, a score was calculated taking into account the

topology of the surrounding network, based on the ratio between total

associations and associations with input proteins. Molecular targets

with a score higher than the threshold (0.1) were kept in the final sub-

network(s). This node inclusion parameter is in the conservative end

of the optimal range for protein-protein interaction networks18. As a

final step all proteins in the complex were checked for associations

among them and the missing one were added. (3) Establishment of a

confidence score for the surrounding network (cscore) and of a score

for each protein (cpscore): Each of the pulled down complexes was

tested for enrichment on our input set by comparing them against

1.0e4 random complexes for the protein-protein association set to

establish a cscore for each sub-network and a cpscore for each

connected proteins. The cpscore was used to rank proteins to select

potential molecular targets for chemicals. An illustration of cpscore is

available on Table S2 for approved drugs.

Postscript
All the CTD human protein-chemical associations were

extracted from the CTD on June 26, 2008. Subsequent updates

of CTD, as of June 25, 2009, did not change the overall trends or

conclusions of the present study.

Supporting Information

Figure S1 Structure-target relationship: Oral bioavailability

profiles.For drugs, permeability and absorption are properties

considered to be important for effective delivery systems, and they

receive special attention in pharmaceutical research. We chose to

focus on the oral bioavailability properties based on standard

Lipinski and Veber rules. It is important to keep in mind that the

rules serve as guidelines only - some classes of chemicals, like

antibiotics, do not respect the rules. The selected properties are the

molecular weight, the octanol/water partition coefficient (an

indication of the ability of a molecule to cross biological

membranes), the number of hydrogen bond-donor, the number

of hydrogen bond-acceptor and the number of rotatable bond.

The distributions of the different molecular properties have partial

overlaps indicating that small environmental molecules could

mimic drug properties. As an example, the distribution of the

molecular weight shows a similar profile for each of the three

MeSH categories, with a light tendency for ‘Toxic Actions’

chemicals to have a smaller molecular weight (MW). The mean of

MW for ‘Toxic Actions’ is 264 daltons whereas the mean of MW

for ‘Pharmaceutical Actions’ chemicals is 386 daltons.

Found at: doi:10.1371/journal.pcbi.1000788.s001 (0.06 MB

DOC)

Figure S2 Comparing overlaps between protein-protein associ-

ations and protein-protein interactions. To assess the reliability of

our protein-protein association scores, we fitted a calibration curve

of the different PPA scores against overlaps with two PPI

databases: the Vidal’s interactome and a highly confident set

from Lage et al. Vidal’s PPIs are based on an internal consistent

single data source defined using yeast two-hybrid system. Lage’s

PPIs contain interactions present in the largest databases and data

inferred from model organisms. All the interactions used from

Lage et al for the calibration curve are experimental (extracted

from Reactome, KEGG and experimental data from small scale

experiments). In both comparison, the weighted score (wscore, in

red) appears to be superior compared to the score derivates from a

hypergeometric test (hscore, in green) and to the random scores.

The vertical line represent the threshold selected, which

correspond to 8% of the complete P-PAN i.e. 200,080 proteins.

Found at: doi:10.1371/journal.pcbi.1000788.s002 (0.07 MB

DOC)

Figure S3 Molecular target predictions for DEHP: novelty of

the P-PAN. The novelty of our P-PAN is supported by comparing

the predicted proteins associated to DEHP using our approach

and an existing method String [1]. Blue nodes are the 15 input

proteins known to be associated to this chemical in CTD, green

nodes are the predicted proteins from String. Purple nodes are the

proteins predicted for DEHP using our P-PAN (dark purple are

the proteins with a high confidence score). Green edges are the

protein-protein interactions predicted from the String database

and purple edges are the protein-protein associations suggested by

P-PAN. In the String output network none of the GABA receptors

were found, which were identified as potential molecular targets

for DEHP using our P-PAN. Considering high confidence score

for both methods (String score.0.98), no overlaps between

predicted proteins were found. The interactions between predicted

proteins were removed for more clarity.

Found at: doi:10.1371/journal.pcbi.1000788.s003 (0.26 MB

DOC)

Figure S4 Distributions of the gene- disease scores from

GeneCards-AKS2 and OMIN. To integrate disease information

to the clusters, GeneCards was used as a source of disease-protein

connections. In order to limit the use of false positives present in

GeneCards, we mapped shared protein-disease association from

OMIN and GeneCards. According to the overlap curves, we set a

significant cut-off value of the GeneCards-AKS2 score (in red) of

60.

Found at: doi:10.1371/journal.pcbi.1000788.s004 (0.28 MB

DOC)

Text S1 Mining the P-PAN for chemicals associated with

diseases.

Found at: doi:10.1371/journal.pcbi.1000788.s005 (0.06 MB

DOC)

Text S2 Molecular targets predictions for chemicals.
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Found at: doi:10.1371/journal.pcbi.1000788.s006 (0.07 MB

DOC)

Table S1 Example of molecular target predictions for chemicals.

References: 1. Mahgoub AA, El-Medany AH (2001) Evaluation of

chronic exposure of the male rat reproductive system to the

insecticide methomyl. Pharmacol. Res. 44:73–80. 2. Bernard L,

Martinat N, Lécureuil C, Crépieux P, Reiter E, Tilloy-Ellul A,

Chevalier S, Guillou F (2007) Dichlorodiphenyltrichloroethane

impairs follicle-stimulating hormone receptor-mediated signaling

in rat Sertoli cells. Reprod. Toxicol. 23:158–164. 3. Saqib TA,

Naqvi SN, Siddiqui PA, Azmi MA (2005) Detection of pesticide

residues in muscles liver and fat of 3 species of Labeo found in

Kalri and Haleji lakes. J. Environ. Biol. 26:433–438. 4. Flodström

S, Hemming H, Warngard L, Ahlborg UG (1990) Promotion of

altered hepatic foci development in rat liver cytochrome P450

enzyme induction and inhibition of cell-cell communication by

DDT and some structurally related organohalogen pesticides.

Carcinogenesis 11:1413–1417. 5. Sakai H, Iwata H, Kim EY,

Tsydenova O, Miyazaki N, Petrov EA, Batoev VB, Tanabe S

(2006) Constitutive androstane receptor (CAR) as a potential

sensing biomarker of persistent organic pollutants (POPs) in

aquatic mammal: molecular characterization expression level and

ligand profiling in Baikal seal (Pusa sibirica). Toxicol. Sci. 94:57–

70 6. Ding X, Staudinger JL (2005) Repression of PXR-mediated

induction of hepatic CYP3A gene expression by protein kinase C.

Biochem. Pharmacol. 69:867–873. 7. Matsuura I, Saitoh T, Tani

E, Wako Y, Iwata H, Toyota N, Ishizuka Y, Namiki M, Hoshino

N, Tsuchitani M, Ikeda Y (2005) Evaluation of a two-generation

reproduction toxicity study adding endpoints to detect endocrine

disrupting activity using lindane. J. Toxicol. Sci. Spec No 135–

161.

Found at: doi:10.1371/journal.pcbi.1000788.s007 (0.04 MB

DOC)

Table S2 Illustration of cpscore for approved drugs.

Found at: doi:10.1371/journal.pcbi.1000788.s008 (0.09 MB

DOC)
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Thimerosal induces micronuclei in the cytochalasin B block micronucleus test

with human lymphocytes. Arch Toxicol 77: 50–55.

29. Kuper CF, Stierum RH, Boorsma A, Schijf MA, Prinsen M, et al. (2008) The

contact allergen dinitrochlorobenzene (DNCB) and respiratory allergy in the
Th2-prone Brown Norway rat. Toxicology 246: 213–221.

30. Sani HA, Rahmat A, Ismail M, Rosli R, Endrini S (2004) Potential anticancer

effect of red spinach (Amaranthus gangeticus) extract. Asia Pac J Clin Nutr 13:
396–400.

31. Block G, Patterson B, Subar A (1992) Fruit vegetables and cancer prevention: a

review of the epidemiological evidence. Nutr Cancer 18: 1–29.

32. Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health

and disease. Mol Aspects Med 26: 459–516.

33. Peters U, et al. (1997) Serum lycopene other carotenoids and prostate cancer
risk: a nested case-control study in the prostate lung colorectal and ovarian

cancer scrrening trial. Cancer Epidemiol Biomarkers Prev 16: 109–126.

34. Toniolo P, Van Kappel AL, Akhmedkhanov A, Ferrari P, Kato I, et al. (2001)
Serum carotenoids and breast cancer. Am J Epidemiol 153: 1142–1147.

35. Martinasso G, Maggiora M, Trombetta A, Angela CR, Muzio G (2006) Effetcs

of di(2-ethylhexyl) phthalate a widely used peroxisome proliferator and
plasticizers on cell growth in the human keratinocyte cell line NCTC 2544.

J toxicol Env Health 69: 353–365.

36. Latini G (2000) Potential hazards of exposure to di-2-ethylhexyl phthalate in
babies: a review. Biol Neonate 78: 268–276.

37. Turan N, Waring RH, Ramsden DB (2005) The effect of plasticisers on

‘‘sulphate supply’’ enzymes. Mol Cell Endocrinol 244: 15–19.

38. Kim HS, Ishizuka M, Kazusaka A, Fujita S (2004) Alterations of activities of

cytosolic phospholipase A2 and arachidonic acid metabolizing enzymes in di-(2-

ethylhexyl) phthalate induced testicular atrophy. J Vet Med Sci 66: 1119–1124.

PPA Network using Toxicogenomics Data

PLoS Computational Biology | www.ploscompbiol.org 10 May 2010 | Volume 6 | Issue 5 | e1000788



39. Horiuchi Y, Nakayama J, Ishiguro H, Ohtsuki T, Detera-Wadleigh SD, et al.

(2004) Possible association between a haplotype of the GABA-A receptor alpha 1
subunit gene (GABRA1) and mood disorders. Biol Psychiatry 55: 40–45.

40. Moon BH, et al. (2008) A single administration of 2,3,7,8-tetrachlorodibenzo-p-

dioxin that produces reduced food and water intake induces long-lasting
expression of corticotropin-releasing factor arginine vasopressin and proopio-

melanocortin in rat brain. Toxicol Appl Pharmacol 233: 314–322.
41. Legare ME, Hanneman WH, Barhoumi R, Burghardt RC, Tiffany-

Castoglioni E (2000) 2,3,7,8-tetrachlorodibenzo-p-dioxin alters hippocampal

astroglia-neuronal gap junctional communication. Neurotoxicology 21:
1109–1116.

42. Nayyar T, Zawia NH, Hood DB (2002) Transplacental effects of 2,3,7,8-
tetrachlorodibenzo-p-dioxin on the temporal modulation of Sp1 DNA binding

in the developing cerebral cortex and cerebellum. Exp Toxicol Pathol 53:
461–468.

43. Kakeyama M, Sone H, Miyabara Y, Tohyama C (2003) Perinatal exposure to

2,3,7,8-tetrachlorodibenzo-p-dioxin alters activity-dependent expression of
BDNF mRNA in the neocortex and male rat sexual behavior in adulthood.

Neurotoxicology 24: 207–217.
44. Kim SY, Yang JH (2005) Neurotoxic effects of 2,3,7,8-tetrachlorodibenzo-p-

dioxin in cerebellar granule cells. Exp Mol Med 37: 58–64.

45. Boverhof DR, Burgoon LD, Tashiro C, Sharratt B, Chittim B, et al. (2006)
Comparative toxicogenomics analysis of the hepatotoxic effects of TCDD in

Sprague Dawley rats and C57BL/6 mice. Toxicol Sci 94: 398–416.
46. Fletcher N, Wahlström D, Lundberg R, Nilsson CB, Nilsson KC, et al. (2005)

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the mRNA expression of
critical genes associated with cholesterol metabolism bile acid biosynthesis and

bile transport in rat liver: a microarray study. Toxicol Appl Pharmacol 207:

1–24.
47. Volz DC, Bencic DC, Hinton DE, Law JM, Kullman SW (2005) 2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD) induces organ- specific differential gene
expression in male Japanese medaka (Oryzias latipes). Toxicol Sci 85: 572–84.

48. Lalwani ND, Reddy MK, Qureshi SA, Reddy JK (1981) Development of

hepatocellular carcinomas and increased peroxisomal fatty acid beta-oxidation

in rats fed [4-chloro-6-(23-xylidino)-2-pyrimidinylthio] acetic acid (Wy-14643) in

the semipurified diet. Carcinogenesis 2: 645–650.

49. Suga T (2004) Hepatocarcinogenesis by peroxisome proliferators. J Toxicol Sci

29: 1–12.

50. Amacher DE, Adler R, Herath A, Townsend RR (2005) Use of proteomic

methods to identify serum biomarkers associated with rat liver toxicity or

hypertrophy. Clin Chem 51: 1796–1803.

51. Bauer D, Wolfram N, Kahl GF, Hirsh-Ernst KI (2004) Transcriptional

regulation of CYP2B1 induction in primary rat hepatocyte cultures: repression

by epidermal growth chemical is mediated via a distal enhancer region. Mol

Pharmaco 65: 172–180.

52. Heder AF, Hirsch-Ernst KI, Bauer D, Kahl GF, Desel H (2001) Induction of

cytochrome P450 2B1 by pyrethroids in primary rat hepatocyte cultures.

Biochem Pharmacol 62: 71–79.

53. Eil C, Nisula BC (1990) The binding properties of pyrethroids to human skin

fibroblast androgen receptors and to sex hormone binding globulin. J Steroid

Biochem 35: 409–414.

54. von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, et al. (2007)

STRING 7– recent developments in the integration and prediction of protein

interactions. Nucleic Acids Res 35: 358–362.

55. Stein LD (2004) Human Genome: End of the Beginning. Nature 431: 915–916.

56. Oprea TI, Tropsha A (2006) Target chemical and bioactivity databases -integration

is key. Drug Discov today technol 3: 357–365.
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