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In this study, an attempt was made to define the opti-
mum set of spectral narrowbands and the required 
bandwidth for agricultural applications. Spectral  
observations were collected using ASD handheld  
spectroradiometer (325–1075 nm) from major kharif 
(rainy) and rabi (winter) season crops, two different 
soil types and crops under different agronomic treat-
ments. To identify best bands, a stepwise discriminant 
analysis (SDA) was carried out for each data set.  
Aggregating the bands selected from individual SDA, 
13 optimum narrow bands were identified for crop 
and soil assessment. To find optimum bandwidth, the 
measured reflectance was aggregated to different 
bandwidths (3, 5, 10, 15, 20, 25 and 30 nm). The  
reflectance values at different wavelength regions 
were compared with the original spectra using root 
mean square error. It was found that the optimum 
bandwidth required for crop discrimination differed 
for different wavelength regions.  
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CONVENTIONAL remote sensing is based on the use of 
several rather broadly defined spectral regions, whereas 
hyperspectral remote sensing is based on the examination 
of many narrowly defined spectral channels1. In agricul-
ture, hyperspectral remote sensing data has potential in 
crop stress detection2, biophysical parameter retrieval3, 
soil type discrimination4 and soil properties quantifica-
tion5. Because hyperspectral data comes with large  
number of bands, it is difficult to analyse such high  
dimensional data. It has also been shown that this data 
has high redundancy and 96% of the variability in the 
data could be explained using four principal components 
derived from 76 bands6. Keeping this in view, it is essen-
tial to define an optimum smaller set of narrow bands that 
are specific for various agricultural applications. 
 Apart from this, hyperspectral spectra are generally 
noisier as compared to the controlled laboratory situation. 
This is because their narrow bandwidth can only capture 
very little energy that may be overcome by the self-
generated noise inside the sensors. Moreover, Sun’s vari-
able illumination greatly reduces incoming signal. Figure 
1 shows spread of noise over the spectrum. Therefore, it 
is necessary to smoothen the reflectance spectra collected 
in the fields with handheld spectrometer or from remotely 
sensed images before analysis. Several requirements have 
to be met while selecting an optimal bandwidth for the 
hyperspectral data. The absorption feature should be pre-
served, while the wavelength position of the local minima 
or maxima as well as inflection points should not move. 
It means that the ability to resolve fine spectral details 
and the noise removal capacity should be well-optimized 
to minimize disturbances to original spectral data.  
 Keeping this in view, this study was carried out to  
define an optimum set of narrow bands and the optimum 
bandwidth for hyperspectral data utilization in agricu-
lture. 
 To determine the optimum narrow bands a large number 
of spectral observations were collected, representing the 
wide variability existing in agriculture. Observations 
were collected from different locations such as experimen-
tal farms of Indian Agricultural Research Institute (IARI), 
New Delhi (77.20°E long. and 28.63°N lat.); Punjab  
Agricultural University (PAU) Research Station, Bath-
inda, Punjab (74.58°E long. and 30.17°N lat.) and Central 
Potato Research Station (CPRS), Jalandhar, Punjab 
(75.32°E long. and 31.16°N lat.). The study included, the 
major kharif (rainy) and rabi (winter) season crops like, 
rice, wheat, maize, pearl millet, gram, soybean, mustard 
and cotton. Different agronomic treatments such as irriga-
tion, fertilizers, variety and date of sowing were also 
studied. Soils with significantly different nutrition para-
meters were included in the analysis (Table 1). There 
were total six sets of observations. 

 Spectral reflectance for soil and crop was collected using 
a 512-channel spectroradiometer7 with a range of 325–
1075 nm. The instrument acquired hyperspectral data at 
the spectral resolution of 3 nm. But by sampling, the  
instrument delivers data with 1 nm interval. Gathering 
spectra at a given location involved optimizing the inte-
gration time (typically set at 17 ms) providing foreoptic 
information, recording dark current, collecting white ref-
erence reflectance and obtaining the target reflectance. 
The target reflectance is the ratio of energy reflected off 
the target (e.g. crop) to energy incident on the target 
(measured using BaSO4 white reference). Since the dark 
current varies with time and temperature, it was gathered 
for each integration time (virtually new for each plot). 
 Reflectance measurements were made about 1 m above 
the crop canopy/soil surface with the sensor facing the 
target and oriented normal to the plant. The reflectance 
measurements were collected for soil and crop using 25° 
field-of-view (FOV). This FOV was selected, so that at 
least 40 cm diameter crop region will be covered when 
the instrument is kept 1 m above canopy. The readings 
were taken on cloud-free days at around solar noon-time; 
while taking the observations care was taken not to cast 
shadow over the area being scanned. A total of 10–15 
spectral reflectance profile observations were collected 
for each crop/treatment/soil type. For viewing, analysing 
and exporting the spectral data, a window-based software 
View Spec Pro was used. 
 The reflectance profile contained spectral wavelengths 
from 325 to 1075 nm with 1 nm interval. However, pre-
vious studies8,9 have shown that wavebands in immediate 
neighbourhood of one another provide similar informa-
tion, hence becoming redundant. Given these facts, we 
have averaged the spectral data over 10 nm thus reducing 
the number of data points to 75 wavelengths. There are 
various methods to compress the data from 1 to 10 nm. 
However, we did simple averaging, assuming a square 
wave spectral response function within 10 nm range. We  
found that within any 10 nm range, the coefficient of 
variation of reflectance was less than 2% (ref. 6). Hence 
an average can appropriately represent the reflectance 
values of that range. 
 

 
 

Figure 1. A field spectrum of rice crop with handheld spectroradio-
meter. 
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Table 1. Data set for optimum narrowband selection 

Discrimination set Targets Location 
 

Crops (kharif) Rice, maize, cotton, soybean, pearlmillet IARI, New Delhi 
Crops (rabi) Chickpea, mustard, wheat IARI, New Delhi 
Crop variety 15 wheat varieties IARI, New Delhi 
Crop stage Mustard two stages  IARI, New Delhi 
Crops (date of sowing) Two dates of sowing of cotton PAU Farm, Bathinda, Punjab 
Crop treatment (irrigation) Three irrigation treatments in potato crop CPRS Farm, Jalandhar, Punjab 
Crop treatment (nitrogen) Five nitrogen treatments in rice crop  CPRS Farm, Jalandhar, Punjab 
Crop treatment (phosphorus) Five phosphorus treatments in rice crop CPRS Farm, Jalandhar, Punjab 
Soil type Four fields with varying soil types CPRS Farm, Jalandhar, Punjab 

 
 

 
 

Figure 2. Frequency of occurrence of various bands in different sets 
of stepwise discriminant analysis. 
 
 
 To get the best narrow band indices for crop discrimi-
nation under different nitrogen treatments, the stepwise 
discriminant analysis (SDA) was carried out. Wilks’ 
Lambda is the test statistic preferred for multivariate 
analysis of variance (MANOVA) and is found through a 
ratio of the determinants. Wilks’ lambda (Λ) is given by10 
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where S is a matrix which is also known as sum of 
squares (SS) and cross-products (SSCP). 
 Wilks’ lambda is a multivariate test of significance and 
ranges within 0 to 1. The values close to 0 indicating the 
group means are different and values close to 1 indicating 
the group means are not different and 1 indicates all 
means are the same. The SDA was carried out using 
SPSS 10.0.5 (ref. 11). 
 The spectral resolution of ASD handheld spectroradi-
ometer is 3 nm, though it provides data at every 1 nm 
through resampling. To select the optimum bandwidth 
observations were collected from rice crop with five dif-
ferent nitrogen treatments grown in the CPRS farm, 
Jalandhar. This observation target was selected because 
the nitrogen treatments had generated large variability in 
the rice crop. The leaf area index (LAI) varied from 0.4 

to 1.7 whereas the total chlorophyll content (mg/g leaf)  
varied from 2.51 to 4.18. The data was integrated to 3, 5, 
10, 15, 20, 25 and 30 nm width using ViewSpec software, 
which comes with spectroradiometer. The reflectance 
curves and first derivative of reflectance were prepared 
for each bandwidth. The derivative reflectance spectra 
amplify the changes in the original reflectance spectra. 
The reflectance values were compared with 3 nm spectra 
at different reflectance/absorption peaks. Root mean 
square error (RMSE) at each level of integration from the 
3 nm was also calculated for different regions of the spec-
trum. 
 The final results of SDA, showing the wavelengths se-
lected for discrimination and corresponding multivariate 
statistics are shown in Table 2. When we compare the sta-
tistics, it can be found that there was best discrimination 
among cotton crop under two dates-of-sowing followed 
by soil types and then crop types. The lowest discrimina-
tion was between rice crops with different phosphate fer-
tilizer treatments. 
 By combining all these wavelengths, we could find 36 
unique wavelengths. These wavelengths were categorized 
by the frequency of their occurrence in different sets of 
SDA (Figure 2). We selected only those bands which 
have frequency of two or more. The study could identify 
13 optimum bands in VNIR (400–1050 nm) region for 
crop and soil assessment, by combining the bands  
selected from individual discriminant analysis. These  
included bands in ultraviolet (2), blue (2), green (1),  
red (3), red edge (2), NIR (2) and moisture sensitive NIR 
(1) region. The importance of these bands is shown in  
Table 3. 
 The reflectance spectra and their first derivative inte-
grated to different bandwidths, for rice crop, are pre-
sented in Figure 3. These curves are plotted with offset 
for better viewing. Hence, the curves need to be studied 
with respect to their pattern, rather than reflectance values. 
It showed that the 3 nm data is highly noisy followed by 
5 nm data. The noise reduction started from 10 nm. How-
ever, when it went up to 20–30 nm level of integration, 
many of the absorption features were getting smoothened, 
as can be seen in 700–750 nm range in 1st derivative 
spectra. 
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Table 2. Results of stepwise discriminant analysis on different datasets 

Source of variation Wavelengths selected Wilks’ lambda F value 
 

Rabi season crops (4) 400, 450, 480, 550, 660, 680 0.000 85.5 
Kharif season crops (5) 400, 420, 450, 500, 550, 590, 600, 610, 670, 660, 710, 730, 740, 0.001 86.380 
   760, 830, 940 
Wheat varieties (15) 370, 940, 770, 750, 1030 6.32E-05  
Mustard stages (2) 400, 430, 480, 610 0.065 53.9 
Cotton – dates-of-sowing (2) 560, 700 0.001 1568.2 
Rice: nitrogen treatments (5) 400, 440, 570, 710, 740, 760, 770, 800, 930, 970 0.001 22.5 
Rice: phosphorus treatments 640, 680 0.701 3.451 
Potato: irrigation treatments* 540, 610, 630, 700,1000 0.172 8.16 
Soil types (4) 420, 720, 770, 790, 850 0.000 319.6 

*Source: Ray et al.6. 
 
 

Table 3. Importance of the selected bands for agricultural applications 

Band Importance 
 

400, 420 Chlorophyll a absorption peak at 430 nm, carotenoid shoulder at 425 nm 
450, 480 Chlorophyll b absorption peak at 460 nm and carotenoid absorption peaks at 455 and 480 nm 
550 Green reflectance peak, maximum reflectance in the visible spectrum, anthocyanin absorption peaks at 530 nm 
610 Influenced by chlorophyll b absorption peak at 640 nm 
660 Chlorophyll a absorption peak 
680 Greatest crop-soil contrast. Chlorophyll absorption maxima 
710, 740 Red edge 
760, 770 NIR reflectance 
940  Influenced by water absorption at 970 nm and maximum reflectance region of the NIR spectrum at 920 

 
 

 
 

Figure 3. Spectral profile of (a) reflectance and (b) its first derivative for rice crop with N dose 180 kg/ha at different levels of integration (N.B. 
The curves are presented with offsets for proper viewing. Curves need to be studied for their pattern but not for reflectance values). 
 
 
 Comparison of the reflectance of different peaks (Table 
4) showed that with a higher level of integration the  
reflectance decreased at green and NIR peaks, and  
increased at red absorption peak. However, up to 10 nm 
integration, in the green peak, reflectance difference re-
mained within 2% of 3 nm bandwidth. It was found that, 
in the red absorption peak, the reflectance difference was 
low (less than 5% of 3 nm spectrum) up to 10 nm integra-
tion level. In green and NIR reflectance peaks, the reflec-
tance difference was low up to 15 nm integration level. 
 RMSE calculated for all levels of integration in com-
parison to 3 nm data, showed that for 700–800 nm region, 

which includes the red edge, finer the resolution lower 
the RMSE (Figure 4). Because this region is very crucial 
for crop stress studies finer bandwidth is required. For 
600–700 and 800–900 nm region, there was no change in 
RMSE, till 15 nm bandwidth. For 400–500 nm and 900–
1000 nm region the RMSE does not change up to 25 nm 
integration. This is because near uniform reflectance in 
this region, as can be seen from the derivative spectrum. 
Earlier studies12 also concluded that different bandwidths 
were found to be optimum for different regions in the 
spectrum. The bandwidths specified by them ranged from 
4 nm in red region to 70 nm in NIR region. 
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Table 4. The reflectance difference of smoothened spectra from the original 3 nm spectrum (for nitrogen  
 treatment 180 kg/ha) 

 Bandwidth (nm) 
 

Parameters 3 5 10 15 20 25 30 
 

At green maximum 
 Reflectance (%) 13.0 13.0 12.8 12.5 12 11.8 11.3 
 Difference from 3 nm  – 0.0 –0.2 –0.5 –1.0 –1.2 –1.7 
 
At red minimum 
 Reflectance (%) 2.5 2.5 2.6 2.7 2.5 2.75 2.9 
 Difference  – 0.0 0.1 0.2 0.0 0.25 0.4 
 
At NIR maximum 
 Reflectance (%) 58.0 57.0 56.0 55.0 52.0 52.0 53.0 
 Difference  – –1.0 –2.0 –3.0 –6.0 –6.0 –5.0 

 

 
 

Figure 4. Root mean square error of reflectance at different wave-
length regions with different band integrations. 
 
 
 
 Thus, the optimum bandwidth required for crop stress 
discrimination differed for different wavelength regions. 
It was required to have narrow bandwidth (5–10 nm) in 
red edge and early NIR region. In 500–700 and 800–
900 nm regions, bandwidth up to 25 nm was found to be 
optimum. 
 This study was carried out to find out the optimum set 
of narrow bands and required bandwidth for agricultural 
applications. This study was particularly important in 
view of Indian Space Programme envisaging launching of 
a space-borne hyperspectral sensor in the near future. The 
study established 13 optimum narrow bands in the 400–
1050 nm region for crop separation, crop stress discrimi-
nation and soil variability analysis. It was also observed 
that the required bandwidth for agricultural applications 
differed in different spectral regions. However, the study, 
may not be a conclusive one. This is because we have 
taken observations from a large number of agricultural 
targets, but many crops such as flowers and fruit crops 
have not been accounted for which may have typical 
spectral behaviour. Also, there is a need to extend this 
study to analyse the band specification required for bio-
physical parameter retrieval.  
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