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Abstract

Containing an epidemic at its origin is the most desirable mitigation. Epidemics have often originated in rural areas, with
rural communities among the first affected. Disease dynamics in rural regions have received limited attention, and results of
general studies cannot be directly applied since population densities and human mobility factors are very different in rural
regions from those in cities. We create a network model of a rural community in Kansas, USA, by collecting data on the
contact patterns and computing rates of contact among a sampled population. We model the impact of different mitigation
strategies detecting closely connected groups of people and frequently visited locations. Within those groups and locations,
we compare the effectiveness of random and targeted vaccinations using a Susceptible-Exposed-Infected-Recovered
compartmental model on the contact network. Our simulations show that the targeted vaccinations of only 10% of the
sampled population reduced the size of the epidemic by 34.5%. Additionally, if 10% of the population visiting one of the
most popular locations is randomly vaccinated, the epidemic size is reduced by 19%. Our results suggest a new
implementation of a highly effective strategy for targeted vaccinations through the use of popular locations in rural
communities.
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Introduction

Influenza A (H1N1), commonly known as swine flu, continues

to be the dominant influenza virus in circulation across the globe

with many countries and overseas territories reporting laboratory

confirmed cases, including at thousands of deaths [1]. Factually,

the origin of pandemic virus strains, such as the current H1N1,

often trace back to rural regions. For example, the H1N1 2009

virus is suspected to have been originated in La Gloria, a small

town near Veracruz, Mexico. Also, the previous strain of H1N1,

commonly known as the Spanish Flu of 1918 that wrought

devastation around the world, originated within the rural State of

Kansas near Fort Riley. Other instances of epidemics originating

in rural regions include the swine flu that originated in September

1988 at a hog barn in Walworth County, Wisconsin, the H5N3

virus that was identified at La Garnache farm in France in late

January 2009, and the Asian flu that was a category 2 avian

influenza in Ghizhou, China in 1956.

For analysis and containment purposes, large cities are generally

considered to be infection hubs owing to the large population

densities and mobility indices. Consequently, most spatio-temporal

research on infectious human diseases focuses on large cities, such

as Portland [2], Chicago [3], and Dresden [4], which respectively

represent excellent examples of an agent-based model, a multi-

scale meta-population model, and a social-structure model,

defining different levels of detail and complexity. Another

approach to characterize the heterogeneous epidemic terrain of

a human population is based on the construction of the network

representing contacts among people. Studies of this type include

[5], [6], and [7].

Various immunization strategies have been formulated for

urban populations. Some of these strategies assumed that the

human population distribution can be estimated as scale free. One

such strategy was a targeted immunization wherein nodes having

the highest connectivity were deemed to be the most critical for

spreading the infection, and hence those highly connected people

were chosen for vaccination [8]. However, global immunization

strategies require the knowledge of the entire network of

individuals and are complex from both computation and

implementation stand points. Conversely, localized mitigation

strategies, such as acquaintance immunization [9], randomly

choose a subset of the entire population, and randomly select a set

of their acquaintances to vaccinate. These strategies require a

lower fraction of the population to be vaccinated than a random

global immunization to dampen the impact of an epidemic. Other

localized immunization methods include targeting acquaintances

of randomly selected people by their estimated contact character-

istics [10].

Disease dynamics in rural regions [11] [12] have received

limited study. Since the population densities and human mobility
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indices of rural regions are very different from those of cities, it is

imperative to develop specific mitigation schemes to impede the

spread of epidemics right from its likely source, the rural location.

Furthermore, recent studies show that rural residents have a lower

likelihood to obtain certain preventive health services than urban

residents [13]. These factors necessitate research on predictive and

optimally preventive strategies in rural regions.

This paper takes a unique look at rural regions, and presents

mitigation strategies tailored for rural Clay county in Kansas,

USA. We propose mitigation strategies that are based on a contact

network model developed using data collected through a survey

campaign conducted in rural Clay and Kearny counties in Kansas,

USA. By characterizing the contact structure of rural regions, we

are able to investigate the influences of this structure and various

mitigation strategies on the speed, shape, and size of the outbreak.

Our analysis shows that, although global targeted strategies are the

most efficient in mitigating epidemics with a limited amount of

resources, they can also be unfeasible due to partial knowledge of

the population and conflicts with individual rights. Random

vaccine distribution in selected popular location within a rural

community offers the opportunity to indirectly reach the

individuals who play a significant role in the epidemic propaga-

tion. We demonstrate with simulations that this location-based

strategy can be 55% as effective as the best global target strategy.

Methods

Our simulation results on epidemic spreading in rural

communities are based on data collected through distributed

surveys. This data is used to construct a contact network and to

analyze the epidemic. Several random and targeted mitigation

strategies are investigated through an SEIR model with param-

eters estimated in an analysis of the recent H1N1 influenza [3].

1. Survey Data
In Spring 2009, we surveyed residents of two rural Kansas

counties through a visit to a county seat and mailed surveys, under

our direct personal supervision. We obtained ethics approval in

January 2009 for research protocols, survey forms, and informed

consent procedures used, by the Institutional Review Board (IRB)

of Kansas State University, Human Subjects Committee,

University research Compliance Office, 203 Fairchild Hall,

Manhattan, Kansas. All potential participants were provided

informed consent in a cover letter attached to their surveys;

signatures were not required from the participants as a way of

protecting their privacy.

The mailed surveys were well accepted with response rates of

64.8% and 41%, respectively for Clay County and Kearny

County. The survey consisted of 30 short questions, a question

concerning visits to local businesses and locations, a question

concerning visits to cities within the surrounding region, and a set

of contact questions. The spread of an epidemic in rural areas may

be influenced by both the vulnerability of the population and the

extent of their contacts with each other. Vulnerability includes

their susceptibility to infection due to both poor health and a lack

of preventive measures, such as vaccination. Once an epidemic

has begun, the willingness of the population to comply with

precautionary health measures can influence the rate and extent to

which the epidemic spreads. In the survey, all these factors were

assessed.

Survey results yielded four measures of risk factors important to

the spread of epidemics: health risk, contact risk, prevention risk,

and compliance risk. To what extent did these risks overlap? Each

possible combination of risks was evaluated and summarized in

Table 1. It is interesting to note that people with the most contacts

tended to have the least preparedness for an epidemic, and people

who were willing to visit others even during an epidemic were

among those most at-risk because of their health status.

Additionally, those who tended to visit friends and family members

more often during normal times were also likely to retain this

behavior even under epidemic conditions. This property of the

rural communities is interesting, since it provides a given level of

stability within the contact network and increases the accuracy of

our epidemic analysis.

Survey results were also used to construct the weighted contact

network. To this purpose, we used the survey responses about

frequently visited locations and the levels of contacts. The

respondents were asked to identify within a set of locations, those

which they visit on a typical day. The responses were captured as a

binary vector Li for each respondent i with each element

Table 1. Possible Combinations of Risk Measures.

Health/Contact Health/Prevention Health/Compliance

As contact risk rose from low to medium to high,
the percentage of respondents with one or more
at-risk health conditions rose linearly from 37.7%
to 45.0% to 56.3% (p,0.18 by chi-square test;
r = 0.15, p,0.07).

Of those respondents from families in which all
members had been vaccinated, only 34.1% had one
or more at-risk health conditions, compared to
49.6% of those from families in which at least some
of the members had not been vaccinated (p,0.09).

The percentage of respondents with one or more at-risk
health conditions tended to rise as a function of their
unwillingness to comply with a directive to stay at home
during an epidemic: no visits (46.1%), one or two
(38.8%), and three or more (75.0%)(p,0.08).

Those who would be most vulnerable or susceptible
to an epidemic were actually most likely to be
engaging in multiple contacts with friends, family,
and guests.

Those who were most susceptible to an epidemic
were least likely to be prepared for it in terms of
anticipatory vaccination.

Those who were willing to visit others even during an
epidemic were among those most at-risk because of
their health status.

Contact/Prevention Contact/Compliance Prevention/Compliance

As contact levels rose from low to medium to high,
the percentage of households with full vaccinations
fell from 32.1% to 19.7% and 20.8%, respectively
(p,0.25 by chi-square test; r = 0.11, p,0.18).

As contact levels rose from low to medium to high,
the percentage of respondents who would not
comply with health directives to remain at home
rose from 29.4% to 40.0% to 44.7%, respectively
(p,0.28 by chi-square test; r = 0.13, p,0.12).

Those from families that were fully vaccinated declined
from 29.1% to 22.0% to 0.0% as respondents shifted
away from no visits, one or two visits, or three or more
visits during an epidemic (p,0.08 by chi-square test;
r = 0.17, p,0.04).

Those with the most contacts tended to have the
least preparedness for an epidemic.

Those who tended to visit friends and family members
more often during normal times were also likely to
retain this behavior even under epidemic conditions.

Those making the most visits were the least likely to be
protected by vaccination.

doi:10.1371/journal.pone.0011569.t001
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corresponding to a location. The contact questions asked the

respondents to estimate the number of individuals with whom the

respondent made contact for three different levels of contact.

Contact levels were classified into Proximity contact (coming within

5 feet of another person, even if in passing), Direct-Low contact

(directly touching another person for a short period of time in what

most people would consider a low risk situation of being infected),

and Direct-High contact (directly touching another person for an

extended period of time or in what most people would consider a

relatively high risk situation of being infected). The responses of

the contact questions are quantified as values nx,i that represent the

number of individuals contacted by respondent i in a typical day

according to each contact level x.

2. Contact Network Construction
With these responses, the rural community is represented as a

weighted contact network where each of the survey respondents is

represented as a node within the network that is connected

together with links representing the contact between respondents.

Each link has a weight that represents the normalized measure of

contact between the connected pair of respondents or nodes. Each

link’s weight wi,j is taken as the average of three sub-weights that

correspond to the interactions between node i and node j

estimated for each contact level x. Values of weights wi,j range

within the interval [0, 1]. We capture the location responses within

the parameter mi,j = (1+li,j)/(1+d), where d is the total number of

locations and li,j is the dot product of the respective location

vectors Li and Lj for nodes i and j. For a given type of contact x, the

related sub-weight function depends on the node degree and the

parameter mi,j. When either node degree nx,i or nx,j is zero, the sub-

weight should be equal to zero. The sub-weight should also

increase monotonically with both nx,i and nx,j, approaching unity

when both are large. When a pair of nodes visit all the locations,

mi,j is equal to unity and the sub-weight should be maximum. On

the other hand, mi,j has a small positive minimum, to allow for

interactions outside the locations included in the survey. For given

nx,i and nx,j, the sub-weight should be minimum when li,j is equal to

zero, and should increase monotonically with increasing li,j, and

consequently mi,j.

For each contact level x, we compute the sub-weight wx,i,j

between node i and node j according to a simple function which

follows the desired behavior:

wx,i,j~(1{(1{mi,jpx)nx,i )((1{(1{mi,jpx)nx,j ) ð1Þ

We selected the values of px such that they include the relative

importance of each of the three contact categories from the

survey responses, constraining pProximity to be less than pDirect-Low and

pDirect-Low to be less than pDirect-High. The values of px have been

estimated by matching the epidemic curve of the H1N1 outbreak

in La Gloria, Mexico [14], with the average epidemic curve

obtained with the weighted network simulations for Clay Center,

Kansas. Based on the minimum squared error, we found that the

best contact levels for Proximity, Direct-High and Direct-Low

contacts are pProximity = 0.0025, pDirect-Low = 0.015, and pDirect-High = 1.0.

Figure 1 reports the number of new infected individuals in La

Gloria [14] with the corresponding simulated new infected

individuals in Clay Center, Kansas given the best estimated

values for the three contact levels. This parameter estimation

was done through an SEIR epidemic model, which we describe

in the following sections.

With the estimated model parameters, we have created the

weighted contact network shown in Figures 2.(a)–2.(i). In

Figure 2.(a), only links with strength greater or equal to 0.2 are

depicted. In the successive figures more links are added by

reducing the threshold, reaching the complete network in

Figure 2.(f), where all links are depicted. The values for the

thresholds considered in the other figures are respectively 0.10 for

2.(b), 0.05 for 2.(c), 0.0125 for 2.(d), and 0.003125 for 2.(e).

Figure 2.(i) is the union of two networks: the network obtained for

Figure 1. New infected individuals. Number of new infected individuals in La Gloria, Mexico by day [14] with the corresponding new infected
individuals in Clay Center, Kansas, given the best estimated values for the three contact levels, averaged over 10,000 simulations.
doi:10.1371/journal.pone.0011569.g001
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threshold 0.1 and the network of the best friends where for each

node only the link with highest strength is depicted. Figure 2.(i) has

been used to create Figure 3, where not only nodes representing

people, but also nodes representing popular locations in Clay

Center are shown.

We performed a sensitivity analysis on each px, varying their

values up to 15%. These variations, shown in Table 2, produce a

maximum of 3.4% variation in total infection cases, with most

changes resulting in a variation of less than 1% in total cases.

To compare our selection of the structure of the weight wx,i,j

shown in Eq. 1, we have constructed another weighted contact

network based only on data about common visited locations. In

this case, the weights wl
i,j are computed as wl

i,j = li,j/d. The network

constructed in this way has 38% of nodes isolated, i.e., with node

degree equal to zero, and when we simulated the SEIR model only

63% of the infected nodes coincided with the infected nodes

obtained using the same model on our contact network.

Consequently, the use of only location data produces not

negligible differences in the results and is not considered in the

following analysis.

3. Network Metrics
To describe in details the characteristics of the weighted contact

network, we select some graph-theoretical metrics that reflect the

local and global properties of the graph [15]. In Table 3, some

relevant metrics for the contact networks are listed. The contact

network is composed of 138 nodes (N) and 9222 links. It is

important to note that that the network is not far from a fully

connected network, which would have 9453 links. However, each

link can have a very different importance due to the structure of

the link weights. For this reason, we select the node strength as one

metric to characterize a node. The strength si of node i is defined

as the sum of the weights wi,j of all links between node i and its

neighbors Ni, si~
P

j[Ni
wi,j . The node strength is analogous to the

node degree in the binary network, which measures the number of

contacts or neighbors of a node. The second metric we compute is

the average shortest path. To compute shortest path properly, we

define the distance di,j between any neighbor nodes i and j as

di,j = 12wi,j. The distance defined in this way is always non-

negative and reveals a short distance separating node i and node j

when their link weight wi,j is high. The third metric, the network

Figure 2. Rural contact network. The rural contact network is composed by nodes representing individuals and weighted edges representing
contacts, displaying all edges with weights greater than the following thresholds: A) 0.20, B) 0.10, C) 0.05, D) 0.0125, E) 0.003125, and F) 0. In the last
row, G) shows the edges with weights greater than 0.10, H) shows the highest weighted edge for each node, and I) shows the union of the previous
two networks.
doi:10.1371/journal.pone.0011569.g002
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diameter is defined as the longest of the shortest paths. As a

centrality measure, we compute the betweenness bi of a node i. It is

defined as the measure of the number of shortest paths between

any pair of nodes passing through node i.

bi~
X

h,j

sh,j,i

sh,j
ð2Þ

where sh,j is the total number of shortest paths from node h to j and

sh,j,i is the number of those shortest paths that pass through the

node i. A node that appears in many shortest paths has high

betweenness. Each bi is normalized by the maximum number of

shortest paths that can pass through a node (N21)(N22)/2.

Another measure of node centrality is the clustering coefficient ci of

a node i, which measures the level of connection among the

neighbors of node i.

ci~
1

ki(ki{1)

X

j,k

(ŵwi,j ŵwi,kŵwj,k)
1
3 ð3Þ

where ŵwi,j~wi,j=max (wi,j) and ki is the degree of node i in the

binary version of the weighted contact network [16]. By averaging

over all individual clustering coefficients, we obtain the average

clustering coefficient of the contact network. The node coreness is

the maximum value k such that the node still exists in the network,

before being removed in the k+1 core. The k-core of a graph is a

maximal subgraph in which each vertex has at least strength k.

The coreness measures the deepness of a node in the core of the

network where a higher value indicates that the node is deeper in

the core. The discrete values for the strength classes are obtained

by a fine quantization of the node strength (step size on the order

of 1026). From the spectral domain, the maximum eigenvalue is

the largest eigenvalue of the weighted adjacency matrix W

representing the network. The elements of W are the weights

wi,j, and the matrix in this case is symmetric and has zeros in the

main diagonal. A large maximum eigenvalue corresponds to a

small epidemic threshold in the Susceptible-Infected-Susceptible

model [17].

Networks often display some level of grouping of nodes in an

organized fashion that allow them to be divided into different

clusters or communities. One popular method of detecting

communities is to maximize a parameter known as modularity

[18]. Modularity is a measure of the difference between the edges

within each community and the expected number of edges in the

same community, summed over all communities within the graph.

Figure 3. Popular location network. The network of people and popular locations in Clay Center, Kansas, where the nodes (survey respondents)
in the cloud network are connected via green edges to the locations in Clay Center according to the survey responses. The map is courtesy of Google.
doi:10.1371/journal.pone.0011569.g003

Table 2. Sensitivity analysis showing percentage differences from original number of total cases.

Percentage Difference 215% 210% 25% +5% +10% +15%

pProximity 20.29334 20.22053 20.10083 20.00539 0.15957 0.22018

pDirect-Low 20.70028 20.49687 20.26954 0.20365 0.50449 0.77051

pDirect-High 23.44748 22.02815 20.95024 X X X

doi:10.1371/journal.pone.0011569.t002
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Using the weighted version of the algorithm described in [19] [18],

we found two communities within our contact network. With a

modularity value of 0.1087, 61% of the population fell into

community 1 and the remaining 39% of the population composed

community 2.

4. SEIR Model on the Contact Network
We expand the weighted compartmental model [17] to

represent the different disease states of individuals: Susceptible

(S), Exposed (E), Infectious (I), and Recovered (R). The states and

the transitions between states are unique to each disease and its

characteristics, requiring customization to each disease. In this

model, we selected b = 0.4, where b is the rate of infection across a

link between a susceptible individual and infected individual,

e<0.909, where e is the transition rate parameter between the

Exposed and Infected compartments, and d = 0.4, where d is the

transition rate parameter between the Infected and Recovered

compartments [20].

The network topology plays an important role in the spreading

process in the transition from S to E when an I individual contacts

an S individual and successfully infects him/her. The probability

that node i is not infected at time t depends on the probabilities

that a neighbor node j is previously infected pj,t21, is in contact

with node i (wi,j), and successfully infects node i (b) [17].

fi,t~ P
j[Ni

(1{wi,jbpj,t{1) ð4Þ

The probability that a node is infected (transition from S to E) at

time t is then 12fi,t. The remaining transitions are topology

independent and only depend on the rate parameters, e and d, of

the disease model. When an individual has contracted the disease

and has transitioned into the exposed compartment, the next

transition to the state I occurs with rate e. Once infected, a node

attempts to infect its susceptible neighbors until it transitions to the

recovered state. Each infected node recovers with recovery rate d.

Once a node is recovered (R), it remains recovered for the

remainder of the simulation. The recovered compartment serves

as an accumulator of all the cases, thus the number of recovered

individuals R at the end of a simulation is a good approximation of

the total number of cases caused by the outbreak. The blue curve

in Figure 1 has been computed using the above model.

5. Epidemic Simulations
The analysis of the epidemic evolution and the evaluation of

multiple mitigation strategies are performed using an SEIR model

on the contact network. We propose different immunization

strategies that can be implemented as vaccinations or antiviral

treatments. The immunization strategies are classified in three

categories based on individuals, locations, and communities. In

each individual immunization strategy, nodes are chosen either

deliberately, based on a node metric or randomly.

The random selection of nodes as recipients of an immunization

represents an unbiased distribution of resources and is the simplest

method for distribution. The node metrics selected for the

targeting strategies include node strength, node coreness, and

node betweenness. Node strength, as a measure of how well an

individual is connected with the rural population, is an intuitive

measure of how likely a node is to be infected by other nodes as

well as how likely the node is to pass the infection on to others.

Therefore to mitigate the infection while using node strength to

select nodes, we target the nodes with the highest strength. The

node coreness is a measure of how deep a node is in the core of a

network. This depth is a measure of the maximum strength of the

nodes iteratively removed from the network periphery before the

node is removed. From a topological perspective, the core of the

network facilitates connectivity and is vital for it. Therefore a

targeted removal or immunization of the core nodes serves to

hinder and disrupt the connectivity that allows the spread of the

infection. The betweenness of a node measures how many shortest

paths between all pairs of nodes choose to route through the node.

Thus targeting nodes with highest betweenness serves to disrupt

the shortest paths that the virus can take, forcing it to longer

routes. We applied these different targeting strategies globally on

the entire network and then within the communities and selected

locations. The immunization of a node is implemented by forcing

the immunized nodes to remain susceptible throughout the

epidemic.

In Table 4 the reduction in the number of cases by percentage

with respect to the unmitigated epidemic is shown, for different

criteria for the selection of the 10% of immunized people among

the global population. The most effective strategy is the one where

the 10% of nodes with highest strength are selected, in line with

previous results, followed by the one based on the selection of 10%

of the nodes with the deepest coreness. However, these types of

strategies have an inherent problem: how can we practically detect

those special nodes? Fortunately, the data collected on the location

popularity, can help to solve this problem. The survey respondents

Table 3. Network Metrics for Contact Network.

Network Metric Value Network Metric Value

Links 9222 Aver. Link Weight 0.0064540

Diameter in # of Hops 2 Aver. Node Coreness 0.49579034

Aver. Clustering Coefficient 0.0037 Aver. Node Betweenness 0.000179682

Aver. Node Strength 0.8626 Aver. Shortest Path by Distance 1.01699

Diameter by Distance 1.99996 Max Eigenvalue of Weighted Matrix 480.5959

doi:10.1371/journal.pone.0011569.t003

Table 4. Global Mitigation Strategies.

Mitigation Strategy
10% Immunization

% Reduction of
Total Cases

Cases Prevented
per Vaccine

Random 11.40 0.69

Highest Strength Nodes 34.57 2.11

Highest Coreness Nodes 25.18 1.53

Highest Betweenness Nodes 16.27 0.99

doi:10.1371/journal.pone.0011569.t004
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associated themselves with various locations in the county by

indicating which ones they typically visit. We used two criteria to

select the locations for targeting and random strategies. To select

locations for the random strategies, we chose the locations having

the highest average value of the desired metric and being

associated with at least 10% of the population. For the targeting

strategies, we chose the locations visited by more than 10% of the

population, and we immunized 10% of the population by selecting

nodes with the highest combined sum for the desired metric within

those locations. In Table 5, the reduction in the number of cases

by percentage is shown, when the immunization of the selected

people is performed among the group visiting a particular location.

Results and Discussion

Obtained results span the two investigated areas, namely risk

assessment and mitigation strategy evaluations. Concerning risk

assessment, very few rural respondents (2%) did not have a high

level of risk in at least one of four areas assessed: health risk,

contact risk, prevention risk, and compliance risk. Over 75% of

households did not have complete uptake of flu vaccine, nearly

half of respondents had at least one major health risk, and nearly

two-fifths of respondents said they would not comply with

directives to stay at home during an epidemic. Risk levels were

positively associated, suggesting that risks were compounded with

each other, a situation posing greater problems for any attempt to

predict or reduce the spread of epidemics in rural areas. Married

respondents were much less likely to report selected health risks by

a substantial margin (38% vs. 69%). Other demographics factors

had relatively small associations with health, compliance, preven-

tion, or contact risks, although some nonlinear associations

between income and the risk factors were noted, with middle-

income respondents having the lowest risk levels compared to

lower or higher-income respondents.

Concerning mitigation strategies evaluation, Table 4 shows that

the random immunization of 10% of the population (first strategy)

reduces the epidemic size by 11.40%, with no substantial gain.

However, if 10% of the nodes with highest node strength are

immunized (second strategy), the epidemic size is reduced by

34.57%, more than three times the size of the random

immunization campaign. In the interesting case where the 10%

of the immunized nodes are randomly selected within the group of

people frequently visiting a specific popular location (third

strategy), an intermediate benefit, of about 19% epidemic size

reduction, is obtained. The identification of specific locations

visited by highest strength nodes has the clear benefit of improving

the efficiency of a random immunization campaign, when this

campaign is conducted in specific locations. Figure 4 shows the

curves of new infected nodes with time under free evolution and

for the discussed three mitigation strategies.

Our simulations suggest that information and immunization

activities for rural communities should be carried out in specific

Table 5. Location-based Mitigation Strategies.

Mitigation Strategy 10%
Immunization

% Reduction
of Tot. Cases

Cases Prevented
per Vaccine

Random in Most Popular Location 14.25 0.87

Random in Highest Strength Location 18.97 1.16

Highest Strength in Most Popular
Location

34.57 2.11

Highest Coreness in Most Popular
Location

25.17 1.53

Highest Coreness in Highest Coreness
Location

24.31 1.48

doi:10.1371/journal.pone.0011569.t005

Figure 4. Simulation of infection evolutions in different mitigation scenarios. Newly infected nodes by day as a percentage of the
population without and with mitigations strategies, including random vaccination throughout the population, random vaccination among nodes
associated with a selected location, and targeted vaccination of a set of nodes having the highest node strength within the rural contact network.
doi:10.1371/journal.pone.0011569.g004
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locations, called key locations, which not only most people but also

the most key people (highest strength nodes) often visit. Detecting

key locations requires some amount of data collection and analysis.

However, detecting key locations is much easier than identifying

highest strength nodes (individuals with high levels of contact). In

other words, the probability of immunizing a highest strength

node given a node random selection in a key location is much

higher that the probability of immunizing a highest strength node

given a node random selection in the entire population.

In the presence of limited anti-viral and vaccination resources,

government health agencies should seek to use the most effective

methods of distribution for mitigation of the threat. Here, we have

investigated the distribution of immunizations to 10% of the

population through various targeting strategies. This work is of

particular interest to rural regions, as they are more likely to face

resource shortages due to smaller budgets than urban areas.

Additionally, rural regions are more likely to have a small set of

local businesses and locations than urban areas due to lower

population densities. Therefore classification and analysis of

popular locations to be targeted for vaccine distribution is a

feasible task. This work has shown the benefit of being able to

select proper distribution locations; a strategy that can be

implemented without having full knowledge of every individual

within the rural population.
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