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Research

Environmental epidemiologic studies have 
established a robust association between 
chronic exposure to ambient-level fine particles 
[particulate matter (PM) with aero dynamic 
diameter ≤ 2.5 µm (PM2.5)] and adverse 
health effects such as mortality, ischemic heart 
disease, and lung cancer (Pope et al. 2002). 
Limited by data availability, large-scale chronic 
health effects studies of PM2.5 have used city-
average concentrations measured at central 
ground monitors as representative of popula-
tion exposures (e.g., Dockery et al. 1993). 
Using city-average exposures ignores within-
city exposure contrasts and may underestimate 
the magnitude of the association between 
PM2.5 pollution and health outcomes. Miller 
et al. (2007) studied the association between 
long-term PM2.5 exposure and the incidence 
of cardiovascular diseases among women 
and reported that simultaneously estimated 
between-city effects and within-city effects 
are comparable. Jerrett et al. (2005) applied 
kriging techniques to study the association 
between within-city PM2.5 exposure gradients 
and mortality risks and found a substantially 
larger effect than previously reported using 
only city-average exposures.

With broad spatial coverage, satellite data 
can potentially expand ground monitoring 
networks into rural and suburban areas. In 
contrast to ground-level PM2.5 measurements, 

satellite sensors provide aerosol optical depth 
(AOD), a quantitative measure of PM abun-
dance in the atmospheric column. Except for 
long-range dust or pollution transport events, 
AOD is dominated by near-surface emissions 
sources (Seinfeld and Pandis 1998). AOD 
retrieved at visible wavelengths is most sensi-
tive to PM 0.1–2 µm (Kahn et al. 1998) and 
is not affected by gaseous copollutants. Unlike 
land use parameters, AOD provides a direct, 
albeit noisy, measurement of fine PM loading 
over an area rather than a surrogate of emis-
sion sources. Recent studies have established 
quantitative relationships between AOD and 
PM2.5 using linear regression models that 
include meteorologic parameters as covari-
ates (Liu et al. 2005, 2007; van Donkelaar 
et al. 2006). Pelletier et al. (2007) studied the 
association between PM10 (PM ≤ 10 µm in 
aerodynamic diameter) concentrations and 
ground-based AOD measurements in Lille, 
France. Their model with smooth meteoro-
logic terms performed significantly better 
than a linear regression model with AOD as 
the only predictor. Because they collected 
data from one site, their model could not 
represent the effect of location on the asso-
ciation between PM10 and meteorology. This 
resulted in substantial performance deteriora-
tion when they tested the model at another 
location. To our knowledge, no applications 

of satellite remote sensing data in spatial 
modeling of regional PM2.5 concentrations 
have been reported. Our work assesses the 
benefits of combining satellite data, meteo-
rology, and land use information in a spatial 
statistical model to predict the spatial and 
temporal variability in daily PM2.5 concentra-
tions at regional scale (i.e., the AOD model). 
Because AOD values are available only under 
cloud-free conditions, we also developed a 
similar statistical model using data collected 
where AOD is not available (i.e., the non-
AOD model). Finally, to examine the differ-
ent spatial patterns of PM2.5 concentrations 
divided by AOD availability, we made pre-
dictions where AOD was available using the 
fitted non-AOD model and compared these 
with predictions made by the AOD model.

Materials and Methods
U.S. Environmental Protection Agency PM2.5 
concentrations. The study domain is a 200 × 
250 km2 rectangle covering Massachusetts 
(except for Cape Cod) and part of surround-
ing states (Figure 1). Among the 32 PM2.5 
monitoring sites of the U.S. Environmental 
Protection Agency (EPA) compliance net-
work operated by state and local government 
agencies on an every-3-day or every-6-day 
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Background: Studies of chronic health effects due to exposures to particulate matter with aero-
dynamic diameters ≤ 2.5 µm (PM2.5) are often limited by sparse measurements. Satellite aerosol 
remote sensing data may be used to extend PM2.5 ground networks to cover a much larger area.

oBjectives: In this study we examined the benefits of using aerosol optical depth (AOD) retrieved 
by the Geostationary Operational Environmental Satellite (GOES) in conjunction with land use 
and meteorologic information to estimate ground-level PM2.5 concentrations.

methods: We developed a two-stage generalized additive model (GAM) for U.S. Environmental 
Protection Agency PM2.5 concentrations in a domain centered in Massachusetts. The AOD model 
represents conditions when AOD retrieval is successful; the non-AOD model represents conditions 
when AOD is missing in the domain.

results: The AOD model has a higher predicting power judged by adjusted R2 (0.79) than does the 
non-AOD model (0.48). The predicted PM2.5 concentrations by the AOD model are, on average, 
0.8–0.9 µg/m3 higher than the non-AOD model predictions, with a more smooth spatial distribu-
tion, higher concentrations in rural areas, and the highest concentrations in areas other than major 
urban centers. Although AOD is a highly significant predictor of PM2.5, meteorologic parameters 
are major contributors to the better performance of the AOD model.

conclusions: GOES aerosol/smoke product (GASP) AOD is able to summarize a set of weather 
and land use conditions that stratify PM2.5 concentrations into two different spatial patterns. Even 
if land use regression models do not include AOD as a predictor variable, two separate models 
should be fitted to account for different PM2.5 spatial patterns related to AOD availability.
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schedule in this area, 4 are in rural locations, 
8 in suburban areas, and 20 in urban centers. 
We obtained daily-average PM2.5 concentra-
tions by gravimetric methods from U.S. EPA 
(2007). We averaged measurements from collo-
cated monitors for model fitting. We also used 
these measurements for estimating uncertainty 
attributable to instrument errors. The study 
period was from April 2003 to June 2005 (801 
days), during which all sites operated for at least 
6 months. We created a 4-km resolution grid 
for data spatial alignment and full-domain pre-
diction. We selected this spatial resolution to 
match the nominal resolution of satellite data.

Geostationary Operational Environmental 
Satellite aerosol/smoke product AOD. The 
Geostationary Operational Environmental 
Satellite (GOES) is the major weather satel-
lite operated by the National Oceanic and 
Atmospheric Administration (NOAA). GOES 
aerosol/smoke product (GASP) AOD is esti-
mated using lookup tables generated by a radi-
ative-transfer model and surface reflectances 
calculated using clear-sky composite back-
ground images (Knapp et al. 2002). The satel-
lite’s geostationary orbit allows AOD retrievals 
at 30-min frequencies between sunrise and 
sunset in cloud-free conditions. Regression on 
binned GASP AOD values against the ground 
truth at 10 northeastern U.S. and Canadian 
sites found a correlation coefficient of 0.79 
(Prados et al. 2007). Paciorek et al. (2008) 
found that daily correlations between AOD 
and PM2.5 over time at fixed locations are 
reasonably high in the eastern United States 
except in winter. We obtained AOD data 
from the GASP team at NOAA National 
Environmental Satellite, Data, and Information 
Service. Data screening criteria for outliers and 
residual cloud contamination followed Prados 
et al. (2007) and Kondragunta et al. (2008). 
We averaged AOD measurements correspond-
ing to 1000–1500 hours local time to generate 
daily AOD estimates. The median number of 
AOD retrievals per day is 4; therefore, daily 
average GASP AOD is expected to create a 
better match to daily PM2.5 measurements 
compared with the snapshots taken by polar-
orbiting satellite sensors.

Meteorologic parameters. The relationship 
between AOD and PM2.5 concentrations can 
be modified by meteorologic parameters such 
as mixing height, relative humidity (RH), air 
temperature, and wind speed (Koelemeijer 
et al. 2006; Liu et al. 2005, 2007; Pelletier 
et al. 2007; van Donkelaar et al. 2006). We 
generated the meteorologic fields in the 
present analy sis by the rapid update cycle 
(RUC) model, a numerical weather fore-
cast system developed by the Earth System 
Research Laboratory RUC development 
group at NOAA (Benjamin et al. 2004). 
RUC data integrate observations from vari-
ous surface networks, commercial aircraft, and 

satellites and are available at 20-km spatial 
resolution (Department of Energy Office of 
Science 2007). The 1-hr frequency of the RUC 
model enabled us to average various meteoro-
logic parameters at the corresponding averag-
ing time window of GASP AOD. The black 
squares in Figure 1 show the centroids of each 
20-km RUC pixel.

Spatial synoptic classification. Synoptic 
weather types have been used as an alternative 
to individual meteorologic parameters in modi-
fying the association between pollution and 
health outcomes (Pope and Kalkstein 1996). 
The spatial synoptic classification (SSC) is a 
semiautomatic classification scheme calculated 
based on daily observations of temperature, 
dew point, wind, pressure, and cloud cover at 
an individual station. A detailed explanation 
of SSC weather types has been previously pub-
lished (Sheridan 2002). We obtained SSC data 
from six weather stations in or surrounding the 
modeling domain (solid triangles in Figure 1) 
from Kent State University (Sheridan 2007) 
and used these to create a three-level (i.e., dry 
tropical, moist tropical, and otherwise) categor-
ical variable based on preliminary analysis.

Land use parameters. Various traffic and 
land use indicators such as distance to road, 
road length, traffic volume, land use type, 
population information, and altitude have 
been used to predict air pollution concentra-
tions at intraurban scale, and no conclusion 
has been drawn on which are best predictors 
of air pollution levels (Brauer et al. 2003). 
We compiled elevation and road length 
data for three classes of roads using raw data 

from ESRI StreetMap USA (Environmental 
Systems Research Institute, Inc., Redlands, 
CA), land use types from the U.S. Geological 
Survey’s National Land Cover Database 
2001 (Multi-resolution Land Characteristics 
Consortium 2007), and population density 
from U.S. 2000 Census data in each 4-km 
grid cell. In Massachusetts, the StreetMap 
data of major roadways are usually within 
approximately 30 m of the very accurate 
Massachusetts Highway Department data 
(Melly S, personal communication).

Spatial alignment of data. To develop 
our spatial models, we matched all parameters 
to the 4-km grid. We report AOD data at the 
centroids of roughly 6.5 km × 2.4 km rectan-
gular GOES pixels. To assign AOD values to 
the regular 4-km modeling grid, we created 
a network of Thiessen polygons in ArcGIS 
(version 9.1; ESRI), each of which is a rect-
angle with an area of 16 km2. We calculated 
the AOD value for each 4-km grid cell as 
the area-weighted average of the AOD values 
of the Thiessen polygons intersecting with 
this cell. AOD values at each U.S. EPA site 
are determined according to the grid cell in 
which the site falls. We determined the SSC 
types and RUC meteorologic parameters at 
each grid cell as well as at each U.S. EPA site 
by the nearest weather station (for SSC) or 
the nearest RUC pixel centroid.

Construction of the AOD and non-AOD 
data sets. Unlike meteorologic and land use 
data with near complete coverage, AOD val-
ues are often missing because of cloud cover, 
high surface reflectance (e.g., snow cover), or 

Figure 1. Study domain and the distributions of U.S. EPA PM2.5 sites, SSC weather stations, and RUC grid 
centroids. Thick lines show state borders, and the thin lines show the 4-km modeling grid.
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retrieval errors. Including GASP AOD as a 
predictor in the model limits the spatial and 
temporal coverage of predicted daily PM2.5 
concentrations. To evaluate the benefits of 
including GASP AOD data, we developed 
two models separately. The AOD model data 
set (2,570 site-days) includes those days when 
GASP AOD data can be matched to EPA 
PM2.5 measurements. The non-AOD model 
data set (7,009 site-days) includes those site-
days when GASP AOD data are missing (i.e., 
PM2.5 observations not matched to AOD). 
The statistical model fitted with this data set 
excludes AOD (the non-AOD model), and is 
designed to evaluate the capability of meteo-
rologic and land use information as predic-
tors of PM2.5 levels when AOD is missing 
(Gryparis et al. 2007). The AOD domain 
data set for prediction includes all the grid 
cells and days when AOD is available dur-
ing the study period as other variables have 
almost complete spatial and temporal cov-
erage (1,023,112 grid-days), and the non-
AOD domain data set includes the rest of 
the grid cells and days (1,809,622 grid-days). 
The AOD and non-AOD domain data sets 
together have complete spatial and temporal 
coverage in the domain.

Model structure and prediction in the 
domain. We modeled the temporal and spatial 
variabilities in PM2.5 concentrations separately 
using two-stage generalized additive models 
(GAMs) (Hastie and Tibshirani 1990). We 
assumed normally distributed, homoskedastic 
model residuals at both stages. Both the AOD 
model and the non-AOD model share the 
common structure expressed in Equations 1–3 
except that AOD is not included in the non-
AOD model, and the two models are fitted 
with different data sets.

Stage 1 of the GAM aims to explain the 
temporal variability in PM2.5 concentrations 
in the modeling domain: 

 Yt,site ∼ N [µ1 + fDOY(DOY )  
  + fAOD(AOD) + fPBL(PBL)  
  + fRH(RH) + fTEMP(TEMP)  
  + fU,V (U,V ) + βSSCSSC,σ1

2]. [1]

Yt,site is the daily PM2.5 concentration at 
a given site. All the covariates (right-hand 
side of Equation 1) are averaged spatially 
and therefore vary only with time, except for 
SSC, because averaging the discrete SSC lev-
els is meaningless. µ1 is the model intercept, 
fDOY(DOY) is a smooth regression term for 
day of year (DOY); fAOD(AOD) is the smooth 
regression term describing the association 
between domain-average AOD and Yt,site; and 
fPBL(PBL), fRH(RH), and fTEMP(TEMP) are 
smooth regression terms describing the impact 
of domain-averaged planetary boundary–layer 
height (PBL), RH, and surface air tempera-
ture (TEMP) on the AOD–PM2.5 associa-
tion, respectively. Following Pelletier et al. 
(2007), we decompose the wind vector into 
the U component (west-to-east) and V com-
ponent (south-to-north) instead of a scalar 
wind speed and wind direction bounded 
between 0 and 360 degrees. fU,V(U,V) is a 
two-dimensional smooth surface describing 
the impact of wind speed and direction on 
the AOD-PM2.5 association. SSC is modeled 
as a three-level categorical variable because of 
its discrete values.

Stage 2 of the GAM aims to explain the 
spatial variability in PM2.5 concentrations in 
the modeling domain:

Ysite = Yt,site − Ŷt,site  
 ∼ N [µ2 + βAODAODsite + βPOPPOP  
  + fx,y(x,y) + fCLASS_1(CLASS_1)  
  + fCLASS_3(CLASS_3),σ2

2]. [2]

All the covariates in Equation 2 are aver-
aged over the entire modeling period and 

therefore vary with only space. Ysite is cal-
culated by averaging the residual PM2.5 
concentrations from Equation 1 (i.e., Yt,site 
– Y^t,site) at each site, so it contains only the 
spatial component of the variability in PM2.5 
concentrations. µ2 is the model intercept, 
AODsite is the average GASP AOD at a given 
site, and POP is population density at a given 
site. Both site-average AOD and population 
density are modeled as linear terms based 
on preliminary analysis. fx,y(x,y) is the pure 
spatial smooth surface reflecting the poten-
tial impact of location, represented by site 
coordinates, on the AOD–PM2.5 association. 
fCLASS_1(CLASS_1) and fCLASS_3(CLASS_3) 
are the smooth regression terms for class 1 
(limited-access or interstate highways) and 
class 3 (secondary and connecting roads, 
state, and county highways) road lengths, 
respectively, in the grid cell in which a given 
site falls.

We considered a third stage to capture 
space–time interaction. However, preliminary 
analysis showed that the covariates that vary 
in space and time (i.e., AOD and weather 
variables) could not predict time-varying spa-
tial PM2.5 surfaces in this domain. A more 
sophisticated model would account for space–
time interaction using a statistical space–
time covariance structure. However, given 
the greatly increased computational burden, 
we chose the simpler specification above, 
because a more sophisticated model structure 
would contribute little to our primary focus 
on the use of AOD for predicting PM2.5. 
Furthermore, having a space–time covariance 
in each model is difficult to interpret con-
ceptually, given that the site-days at nearby 
locations and short time lags can appear in 
both data sets.

We fitted the AOD and non-AOD 
models with the gam() function in the 
mgcv package in R (Wood 2006). We 

Figure 2. Summary statistics of major variables for the AOD model (A) and non-AOD model (B): daily PM2.5 concentrations (A1 and A2), domain-average PBL-layer 
height (B1 and B2), lower troposphere RH (C1 and C2) and wind speed (D1 and D2), surface temperature (E1 and E2), and GASP AOD (F1). 
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represented the one-dimensional smooth 
terms such as fAOD(AOD), fPBL(PBL), 
fRH(RH), fTEMP(TEMP), fCLASS_1(CLASS_1), 
and fCLASS_3(CLASS_3) by penalized cubic 
splines for computational efficiency, which 
is particularly important in the full-domain 
prediction. Using the thin-plate spline basis 
yields very similar results. We represented 
the two-dimensional smooth terms such as 
fU,V(U,V) and fx,y(x,y) using penalized thin-
plate splines. For all the spline terms, we 
estimated the amount of smoothing using 
generalized cross-validation (CV) (Wood 
2006) as implemented by the gam() function. 
We limited the number of knots as an addi-
tional constraint to avoid potential overfit-
ting. The final GAMs presented in this article 
are determined such that all the covariates 
are significant at α = 0.05 level, the model 
adjusted R2 is among the highest of all the 
models, and the correlations between covari-
ates are among the lowest. We also considered 
other meteorologic parameters and land use 
types than those included in the final models, 
but they were not significant. We obtained 
the final prediction of PM2.5 concentration 
by summing the fitted values of Equations 1 
and 2:

Ŷt,site = Ŷt,site + Ŷsite = Ŷt,site + Yt,site − Ŷt,site . [3]

Model validation. We validated our model 
using CV techniques, which test for potential 
overfitting; that is, the model could fit the data 
better at EPA sites than at the rest of the study 
area. In particular, after deciding which of the 
predictors to include in the final model using 
the whole data set, we sequentially retained 
data from one site as the testing data set, fit-
ted the model to the remaining data, and then 
made predictions of daily PM2.5 concentra-
tions at the testing site. We calculated predic-
tion errors by subtracting retained observations 
from the model predictions. We estimated the 
model prediction precision by taking the square 
root of the mean squared prediction errors 
(RMSPE) (Yanosky et al. 2008). On comple-
tion of model development, we used both the 
AOD and the non-AOD models to predict 
daily PM2.5  concentrations in the domain using 
the  corresponding domain data set.

Results
Descriptive statistics. Figure 2 shows the 
histograms of major predictor variables in 
the two model data sets. Successful AOD 
retrievals require cloud-free conditions and 
low surface reflectance (i.e., no snow or ice 
on the ground), which tend to be associated 
with deep boundary layers, low RH, low 
wind speed, and high air temperature. The 
days without AOD retrievals are associated 
with the opposite weather pattern. The dis-
tributions of PM2.5 concentrations, however, 

were similar in the two data sets (plots A1 
and A2). The overall mean PM2.5 concentra-
tion was 10.7 µg/m3 for the AOD data set 
and 10.8 µg/m3 for the non-AOD data set. 
In both data sets, median PM2.5 concentra-
tion was highest in the summer and lowest 
in the winter. Median AOD was highest in 
the summer (0.17) and lowest in the winter 
(0.09). Negative AOD values caused by errors 
in surface reflectivity estimation are included 
because they provide useful information on 
low AOD situations (Paciorek et al. 2008). 
The histograms and summary statistics of the 
two model data sets are highly comparable 
with their corresponding domain data sets, 
except that both domain data sets have more 
extreme values because of larger sample sizes.

Model fitting and residual spatial auto-
correlation. Table 1 summarizes model-fitting 
results for the AOD and non-AOD models. 
All the predictors listed in Table 1 are statisti-
cally significant at the α = 0.05 level. As indi-
cated by adjusted R2 values, stages 1 and 2 of 
the AOD model explain 77% and 73% of 
the temporal and spatial variability in PM2.5, 
respectively. A linear regression between fitted 
(Equation 3) and observed PM2.5 concentra-
tions yielded an adjusted R2 of 0.79 (correla-
tion coefficient r = 0.89). Judged by adjusted 
R2 values, the spatial variability in PM2.5 cap-
tured by stage 2 contributes only 3% to total 
captured variability in PM2.5. Stages 1 and 

2 of the non-AOD model explain 43% and 
81% of the temporal and spatial variability 
in PM2.5, respectively. A linear regression 
between fitted and observed PM2.5 concen-
trations yielded an adjusted R2 of 0.48 (r = 
0.70). Stage 2 of the non-AOD model con-
tributes 10% to the total captured variability 
in PM2.5 concentrations. Semivariograms of 
the model residuals show some evidence of 
residual spatial autocorrelation in both mod-
els (Figure 3), which is caused by time-varying 
spatial variability not captured in our two-
stage time plus space approach.

Model validation and prediction errors. 
For the AOD model, the linear CV R2, calcu-
lated from simple linear regression between fit-
ted and observed PM2.5 concentrations ranged 
from 0.66 to 0.90 for each site with at least 20 
data records. Table 1 shows that the overall 
linear CV R2 is 0.78, comparable with the 
model adjusted R2 of 0.79. For the non-AOD 
model, the linear CV R2 ranged more widely, 
from 0.31 to 0.74. The overall linear CV R2 is 
0.46, comparable with the model adjusted R2 
of 0.48. Overfitting is unlikely a serious issue 
in both models, although the AOD model 
performed more consistently compared with 
the non-AOD model. Although the mean 
prediction error is very small in both models 
(0.03 µg/m3 and 0.06 µg/m3, respectively), 
Figure 4 shows that predictions from both 
models are biased low at high concentration 

Table 1. Comparison of model fitting results for the AOD and the non-AOD models.

Measure AOD Non-AOD

Sample size (site days) 2,570 7,009
Significant predictors in stage 1 DOY, AOD, PBL, RH, TEMP, (U,V), SSC DOY, AOD, PBL, RH, TEMP, (U,V), SSC
Stage 1 adjusted R 2 0.77 0.43
Significant predictors in stage 2 AOD, POP, (x,y), CLASS_3 POP, CLASS_1, CLASS_3
Stage 2 adjusted R 2 0.73 0.81
Model R 2 0.79 0.48
CV R 2 0.78 0.46
Mean prediction error 0.03 µg/m3 0.07 µg/m3

RMSPE 3.6 µg/m3 5.0 µg/m3

Abbreviations: DOY, day of year; POP, population density within each grid cell.

Figure 3. Residual spatial semivariance plots for the AOD model (A) and non-AOD model (B), with each 
point in a given box plot representing the square root (SQRT) of one-half of the average squared difference 
(of observations co-occurring in time) between two sites. Pairs of sites are binned based on the distance 
between them and only pairs with at least 10 co-occurring observations are included. Error bars indicate 
95% confidence intervals; circles indicate outliers. 
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levels based on linear regressions between fit-
ted and observed PM2.5 concentrations with 
intercepts forced through the origin (7% 
negative bias for the AOD model, and 14% 
negative bias for the non-AOD model). As a 
measure of prediction precision, the RMSPE 
is 3.5 µg/m3 for the AOD model and 5.0 µg/
m3 for the non-AOD model. We use the fit-
ted non-AOD model to predict the AOD 
site-days and found an adjusted R2 of 0.67 
(CV R2 = 0.66) and a negative bias of 11% 
in CV model predictions. This is not fitting 
the AOD model excluding AOD to assess the 
additional effect of AOD on prediction. The 
lower adjusted R2 indicates that the non-AOD 
model does not represent the AOD model 
data set as well as the AOD model because the 
PM2.5 spatial patterns in the AOD model data 
set are different from those of the non-AOD 
model data set.

The CV R2 values suggest that 22% and 
52% of the variability in PM2.5 concentra-
tions are not explained by the AOD and the 
non-AOD models, respectively. In addition 
to unexplained space–time variability and 
unaccounted for variance when comparing 
areal predictions with point measurements, an 
additional source of variability in the observa-
tions is PM2.5 measurement error, which can 
be estimated by comparing collocated obser-
vations. There are 1,496 pairs of observa-
tions from 11 sites with collocated monitors, 
and the number of observations at each site 
ranges from 42 to 314. The overall median 
relative difference, calculated as median [2 × 
(PM2.5_monitor_1 – PM2.5_monitor_2)/
(PM2.5_monitor_1 + PM2.5_monitor_2)], is 
6.1%, and it ranges from 3.4% to 14.2% at 
different sites.

Prediction of PM2.5 concentrations in 
the domain. We used both the AOD and 
non-AOD models to predict daily PM2.5 
concentrations in the domain using the cor-
responding domain data sets. In the AOD 
domain data set, the total number of days 
with AOD data in each 4-km grid cell ranges 
from 134 to 326, with an average of 241 days, 
which corresponds to 17% to 41% temporal 
coverage, with an average of 30% coverage. 
Vermont and northwestern Massachusetts, 
with the most mountainous terrain in the 
domain, have the least coverage, whereas the 
coastal regions of Rhode Island and eastern 
Connecticut have the most coverage.

Figure 5 shows the spatial pattern of pre-
dicted PM2.5 concentrations averaged over the 
entire period by both the AOD and the non-
AOD models. For the AOD model predic-
tions, mean predicted PM2.5 concentrations 
range from 5.7 µg/m3 near the border of New 
York and Vermont to 13.7 µg/m3 in Lowell, 
Massachusetts. As expected, predicted PM2.5 
concentrations are higher in urban areas such 
as Boston, Massachusetts; Providence, Rhode 

Figure 4. Scatterplots of CV predictions of daily PM2.5 concentrations versus U.S. EPA observations by the 
AOD model (A) and the non-AOD model (B). The solid line represents simple linear regression results with 
intercept excluded. The 1:1 line is displayed as a dashed line for reference. (A) fitted = 0.93 × observed; 
(B) fitted = 0.86 × observed.
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Island; Hartford, Connecticut; and Albany, 
New York, compared with rural areas such 
as Vermont, western Massachusetts, and 
southwestern New Hampshire. However, 
high PM2.5 levels show a regional pattern, 
and the highest pollution levels are seen in the 
other areas of eastern Massachusetts instead 
of downtown Boston. In addition, grid cells 
along major highways (e.g., Highways 95, 
89, and 395) tend to have higher PM2.5 con-
centrations, perhaps because these cells are 
also densely populated. The non-AOD model 
predictions have a similar range (from 4.3 µg/
m3 in western Connecticut to 13.6 µg/m3 
at downtown Boston). The predicted PM2.5 
levels by the non-AOD model are comparable 
with the AOD model in major urban cen-
ters but significantly lower in rural areas. In 
addition, the high pollution levels are more 
isolated, with the highest concentrations all 
in downtown areas of Boston; Springfield, 
Massachusetts; Providence; and Hartford.

Predictions at AOD grid-days using non-
AOD model. To visualize the different PM2.5 
spatial patterns separated by AOD availabil-
ity, we used the fitted non-AOD model to 
predict daily PM2.5 concentrations on AOD 
grid-days in the entire domain. We compared 
this set of predictions, which have identical 
spatial and temporal coverage, with the AOD 
model predictions. The AOD model predic-
tions are, on average, 0.8–0.9 µg/m3 higher 
than non-AOD model predictions. Figure 6 
shows how the model predictions differ spa-
tially. The relative differences between the 
non-AOD and the AOD model predictions, 
calculated as 2 × (AOD model prediction – 
non-AOD model prediction)/(AOD model 
prediction + non-AOD model prediction), 
vary substantially by region and land use type. 
Along major highways and in downtown 
areas, AOD model predictions are 5–15% 
lower than non-AOD model predictions, 
whereas predictions from the two models are 
comparable in suburban and urban areas. In 
rural areas, especially in the southwest of the 
domain, AOD model predictions are 25–50% 
higher than the non-AOD model predictions. 
In southern Vermont, AOD model predic-
tions are 15–25% higher than non-AOD 
model predictions partially because annual 
mean AOD model predictions are biased high 
because of the lack of winter values.

Discussion and Conclusions
The AOD model has a few important differ-
ences from the non-AOD model. First, the 
agreement between fitted PM2.5 concentra-
tions and EPA observations is much better 
for the AOD model than for the non-AOD 
model, suggesting that PM2.5 is easier to pre-
dict when AOD is available. Second, stage 2 
of the AOD model contributes only 3% to 
total captured variability in PM2.5 as judged 

by adjusted R2 values, whereas stage 2 of the 
non-AOD model contributes 10% to the 
total captured variability in PM2.5 concentra-
tions. The two-stage GAMs in the present 
analysis are designed to capture the temporal 
and spatial variabilities in PM2.5 concentra-
tions separately. Because the temporal vari-
ability dominates overall PM2.5 variability, 
it is not surprising to see that stage 1 of the 
GAMs largely determines the overall model 
performance. Finally, the AOD model pre-
dicts distinctly different spatial patterns of 
PM2.5 concentrations compared with the 
non-AOD model.

Figure 2 indicates that the success of AOD 
retrieval, determined by cloud cover, weather, 
and surface conditions, is systematically related 
to weather conditions. When AOD retrieval is 
successful (i.e., cloud free, higher temperature, 
no snow/ice on the ground), the total variabil-
ity of PM2.5 concentrations is dominated by its 
temporal component, and concentration levels 
tend to be spatially smooth. Under such con-
ditions, AOD, meteorologic parameters, and 
land use information are all effective predictors 
of PM2.5 concentrations in the AOD model. 
When AOD is missing because of cloud cover, 
high surface reflectance, or other reasons, spa-
tial variability contributes substantially more 
to the total variability in PM2.5 concentration 
in the non-AOD data set. In these conditions, 
meteorologic parameters in stage 1 have less 
predicting power in the non-AOD model than 
in the AOD model, and land use variables are 
more effective predictors in stage 2 of the non-
AOD model. Although AOD is a highly sig-
nificant predictor in the AOD model, it does 

not substantially improve model performance. 
This might be attributed partly to the high 
noise level of GASP AOD caused by simplis-
tic aerosol model assumptions and errors in 
estimating surface  reflectances (Kondragunta 
et al. 2008).

Because cloud cover and high surface reflec-
tance are the major reasons why AOD data are 
missing, the difference in spatial and temporal 
variation of PM2.5 concentrations between the 
two models may be explained by stronger solar 
radiation and low surface reflectance facilitating 
more active vertical and horizontal mixing in 
the boundary layer, resulting in a spatially more 
smooth PM2.5 distribution. Higher temperature 
and direct sunlight also accelerate photochemi-
cal reactions to produce secondary PM species, 
such as sulfate, in the atmosphere. As a result, 
weather conditions are more effective predictors 
of PM2.5 concentrations in the AOD model. 
On the other hand, emissions of primary PM2.5 
are more closely related to the distribution and 
profiles of sources than are meteorologic condi-
tions. This is clearly shown in Figure 5, where 
although both models predicted elevated pol-
lution levels at densely populated urban areas 
and also along major interstate highways, high 
concentrations are more dispersed in AOD 
model predictions than in non-AOD model 
predictions. In conclusion, GASP AOD can 
serve as a summary indicator of a set of weather 
conditions and land use types that stratify 
PM2.5 measurements into two distinct spatial 
patterns, and this differentiation has not been 
previously documented. Figures 5 and 6 sug-
gest that even if land use regression models do 
not include AOD as a predictor variable, two 

Figure 6. Differences between PM2.5 concentrations predicted by the AOD model (for grid-days with AOD 
available) and the non-AOD model (for grid-days with AOD not available) averaged over the days in the 
modeling period. Urban areas with a population of 100,000 or more (based on 2000 census data) and major 
interstate highways are also labeled (data from ESRI StreetMap USA).
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separate models should be fitted to account 
for different PM2.5 spatial patterns related to 
AOD availability. Several significant improve-
ments have been implemented in the latest 
GASP AOD retrieval after the completion of 
the present analysis (Kondragunta S, personal 
communication). These changes, including a 
refined azimuth angle definition, improved 
surface reflectance estimation method, and 
improved standard deviation calculation, may 
help reduce the noise level in GASP AOD data 
and therefore enhance its predicting power in 
our models.

The main limitation of the present study 
regarding PM2.5 prediction is that the two-
stage GAMs are unable to account for the 
changing PM2.5 spatial patterns with time, 
which leads to some residual spatial autocor-
relation. A full-scale space–time model with 
a space–time covariance model (i.e., space–
time kriging) could account for changing spa-
tial surfaces from day to day. Our work has 
focused on the impact of AOD on predicting 
PM2.5, but a full space–time model would be 
needed to better estimate daily PM2.5. Given 
our small domain, which includes only 32 
monitoring sites, we have limited ability to 
estimate the effect of a large number of land 
use covariates such as distance to major roads 
and locations of large point sources, which 
can help in estimating spatial heterogeneity 
(Yanosky et al. 2008). Finally, model perfor-
mance evaluated against monitoring data is 
always affected by the issue of comparing areal 
predictions by the model with point measure-
ments. As illustrated in Georgopoulos et al. 
(2005), local-scale air quality models may be 
introduced to account for subgrid characteris-
tics of photochemical reactions and dispersion.
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