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Efforts to mitigate climate change through the Reduced Emissions
from Deforestation and Degradation (REDD) depend on mapping
and monitoring of tropical forest carbon stocks and emissions over
large geographic areas. With a new integrated use of satellite
imaging, airborne light detection and ranging, and field plots, we
mapped aboveground carbon stocks and emissions at 0.1-ha re-
solution over 4.3 million ha of the Peruvian Amazon, an area twice
that of all forests in Costa Rica, to reveal the determinants of
forest carbondensity and to demonstrate the feasibility ofmapping
carbon emissions for REDD. We discovered previously unknown
variation in carbon storage at multiple scales based on geologic
substrate and forest type. From 1999 to 2009, emissions from land
use totaled 1.1% of the standing carbon throughout the region.
Forest degradation, such as from selective logging, increased re-
gional carbon emissions by 47% over deforestation alone, and
secondary regrowth provided an 18% offset against total gross
emissions. Very high-resolution monitoring reduces uncertainty in
carbon emissions for REDD programs while uncovering fundamen-
tal environmental controls on forest carbon storage and their
interactions with land-use change.
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Between 10% and 15% of global carbon dioxide emissions
originate from deforestation and degradation of tropical for-

ests (1, 2). Emblematic of these emissions, the southwestern Per-
uvian Amazon is undergoing carbon changes via road building,
mining, timber extraction, and farming. Meanwhile, the United
Nations Framework Convention on Climate Change is working
to develop a program to curb carbon emissions via the pro-
gram for Reduced Emissions from Deforestation and Degrada-
tion (REDD) (3, 4). REDD has the potential to connect carbon
emitters with governments positioned to reduce forest carbon
losses through monetary compensation. In addition to offsetting
emissions, REDD could provide indirect support for biodiversity
conservation through reduced habitat loss, thus providing aunique
solution to the longstanding tension between conservation inter-
ests and other land-use needs in tropical forest regions such as the
Peruvian Amazon.
There are many challenges to making REDD work, and map-

ping forest carbon stocks and emissions at the high resolution
demanded by investors and monitoring agencies remains a tech-
nical barrier. Satellite remote sensing offers a practical means to
monitor forest cover (5, 6), but has not provided high-resolution
estimates of carbon emissions (7). In contrast, field plots pro-
vide effective localized estimates of forest carbon stocks, but
natural variation in forest carbon density may render plot-based
approaches ineffective for estimating carbon over large areas.
Furthermore, although plot-based studies are needed for long-
term monitoring of forest dynamics, they are time-consuming and
are usually placed to avoid land-use change, which is the main
anthropogenic factor responsible for carbon flux to the atmo-

sphere in tropical forests. New approaches are critically needed to
extend the role of field plots to capture regional variation and to
bridge a major gap between field and satellite observations.
One new approach is airborne light detection and ranging

(LiDAR), which, when used with field calibration plots, is ca-
pable of estimating aboveground forest carbon densities (in units
of Mg C ha−1) (8). However, airborne LiDAR has not been
proven for carbon mapping of high diversity Amazon forests, and
a key obstacle to large-scale use of LiDAR for REDD moni-
toring is its relatively high cost of operation and small geographic
coverage. However, combined with a strategic use of satellite
data, airborne LiDAR may yield cost-effective, high-resolution
maps of forest carbon stocks and emissions (9). This potential
has never been realized at large geographic scales that would be
pertinent to an international REDD program.
Here we report on a study to apply a new multiscale, multi-

temporal method to analyze carbon stocks and emissions through-
out 4.3 million ha of lowland Amazon forest in the Department of
Madre de Dios, Peru, as a procedure for achieving national-scale
REDDmapping while assessing determinants of biomass stocks at
a large geographic scale. Although subnational within Peru, the
study area is equivalent to twice that of Costa Rica’s forests, and
our study was designed with a survey size that is logistically easy to
implement multiple times to achieve necessary coverage for larger
nations. The Madre de Dios region has undergone relatively
moderate land-use change throughout the past century. However,
paving of the Interoceanic Highway since 2006, along with new
timber concessions and an influx of artisanal gold miners during
the past 5 y, has rapidly increased land-use pressure. In this con-
text, we sought to understand the sources of spatial and temporal
variability in carbon stocks and emissions throughout this large
and rapidly changing region of the Amazon basin. Our approach
involves multiscale steps ranging from automated satellite map-
ping of deforestation and degradation to airborne LiDAR map-
ping to local-scale plot calibration measurements. The approach
provides high-resolution maps of aboveground carbon densities
and a retrospective mapping of carbon emissions based on current
carbon densities and past forest cover changes (SI Materials
and Methods).

Results and Discussion
Airborne LiDAR data yielded forest canopy height, underlying
terrain, and canopy vertical profile, providing a comprehensive,
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regional inventory of both human-mediated and natural varia-
tion in Amazon forest canopy structure. Snapshot areas of 8,000
to 50,000 ha in size are shown in Fig. 1, each indicative of a
major source of variation in canopy structure and carbon stocks
throughout the region. Gold mining spans large areas of lowland
swamp forest, leaving bare surface scars of up to 20 km in length
with almost no remaining tree cover (Fig. 1A). Degradation from
selective logging results in a spatially diffuse decrease in canopy
height in otherwise intact forest (blue areas of Fig. 1B). Farming,
cattle ranching (Fig. 1C), and infrastructural development (Fig.
1D) are major drivers of deforestation, leaving mosaics of de-
pleted carbon stocks with diffusely scattered tree cover along
roadways and in clearings. Finally, by virtue of being regional-
scale, the data allowed us to assess gradients in forest structure
mediated by geomorphic and fluvial processes (Fig. 1E).

During LiDAR overflights, a small, tactically placed network of
field plots was established to convert LiDAR metrics of forest
canopy structure to aboveground carbon density (Fig. S1). Exten-
sive field validation, including both new and previously published
estimates from field plots in the region (10, 11), indicated a
LiDAR-to-carbonmeasurement correlation of 92% (Figs. S4–S6).
Absolute mapping uncertainties were 23 Mg C ha−1 at 0.1 ha res-
olution, but decreased to just 5MgC ha−1, or approximately 5%of
the mean standing forest biomass stock, when the mapping results
were integrated to 5 ha resolution (Figs. S7 and S8).
Application of LiDAR-based carbon statistics to forest type

and condition maps derived from satellite data (SI Materials and
Methods) yielded a 0.1-ha resolution map of aboveground carbon
density throughout the 4.3 million ha region (Fig. 2). Total re-
gional carbon storage was 395 Tg (million metric tons), and three

Fig. 1. Sources of variation in forest canopy height detected with high-resolution Carnegie Airborne Observatory LiDAR in the Peruvian Amazon: (A) ar-
tisanal gold mining; (B) selective logging; (C) deforestation for cattle ranching; (D) infrastructural development in towns, cities, and supporting land uses; and
(E) alluvial and geologic substrate. White bars indicate a distance of 0.5 km in each example image.
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major sources of variation in forest carbon were uncovered. First,
we found a broad regional partitioning of standing carbon stocks
mediated by geologic substrate (12, 13). To the north, older ter-
tiary substrates support carbon densities with median values
ranging from 85 to 100 Mg C ha−1, whereas more fertile and flat
Holocene alluvial surfaces in the central-east support 110 to 125
Mg C ha−1. To the southwest, forests at the base of the Andes on
Cretaceous surfaces maintain carbon densities in the range of 65
to 80 Mg C ha−1 (t test comparisons on randomly selected sub-
sets, P < 0.001).
Stepping down in geographic scale from geologic controls, we

uncovered enormous variation in standing carbon within and
among forest types (Fig. 3A and Fig. S9). Median carbon density
values were unique between forest types in most cases (P < 0.001;
Fig. 2), but the highly varying distributions were the most re-
vealing of ecological controls (Fig. 3A). Upland terra firme forests
on low hills maintain the highest and widest range of carbon
stocks, whereas inundated swamp areas with often monotypic
palm cover are confined to a lower and narrower range of carbon
storage conditions. Still wetter swamp forests with a dense shrub
layer harbor even lower and narrower distributions of carbon.
Areas that undergo periodic disturbance, such as floodplain for-
ests and river edges, have highly skewed, multimodal distributions
of carbon density, indicating a patch mosaic of distinct succes-
sional states. Finally, areas codominated by hardwood species and
bamboo also show a bimodal distribution of carbon states.

Against this backdrop of geological and ecological control on
carbon storage, the most pronounced, localized sources of carbon
variation are deforestation, degradation, and secondary regrowth
(Fig. 2). Although only 5% in geographic extent (Table 1), arti-
sanal mine sites contain the lowest carbon densities among all
land-use scenarios, just 16.7 ± 18.3 (SD) Mg C ha−1. Selective
logging and other forms of forest degradation are common, es-
pecially to the north, and account for 27% of the pixel-by-pixel
changes in forest cover during the study period (Table 1). Forest
degradation is diffusely distributed over large areas, but the
individual pixels impacted within these areas support carbon
stocks of only 35.6 ± 15.4 Mg C ha−1, which is approximately 70%
lower than background forest levels. Deforestation accounted for
nearly 68% of forest loss throughout the region from 1999 to 2009.
However, we found that deforestation results in a wide range of
residual carbon stocks on the land: areas averaging 20% tree cover
maintain 15.9 ± 32.8 Mg C ha−1, whereas those maintaining at
least 60% cover support 61.4 ± 56.2 Mg C ha−1 (Fig. S10).
Integrating historical deforestation and degradation results

(Figs. S2 and S3) with 2009 carbon stocks (Fig. 2), we calculated
annual gross aboveground carbon emissions from 1999 to 2009
(Fig. 3B). Results show a baseline emission rate for 1999 to 2006
of 0.26 ± 0.08 Tg C yr−1 from deforestation and 0.11 ± 0.02
Tg C yr−1 from degradation, for a sum of 0.37 Tg C yr−1. Paving of
the Interoceanic Highway since 2006, combined with new timber
logging concessions and gold mining, caused an increase in de-
forestation emissions by more than 61% to 0.42 ±0.21 Tg C yr−1,

Fig. 2. Variation in aboveground carbon storage at 0.1 ha resolution throughout a 4.3 million ha region of the Peruvian Amazon, derived from an integrated
use of CLASlite, LiDAR and field-plot data. Examples of (i) artisanal gold mining, (ii) selective logging and other forest disturbances, and (iii) deforestation for
cattle ranching, road building, and other infrastructure are indicated.
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whereas degradation emissions doubled to 0.21 ± 0.11 Tg C yr−1

(Fig. 3B). Critically, we found that degradation emissions aver-
aged 47% of deforestation emissions (annual range, 22%–68%)
during the 11-y study period, both before and during the recent
increase in human activity throughout the region. In total, 4.529
Tg of aboveground carbon were committed to the atmosphere
from 1999 to 2009, representing approximately 1.1% of the
standing stock of forest carbon in the region.
Secondary forest regrowth, defined here as forests reestab-

lished following any deforestation and degradation that occurred
between 1999 and 2008, covered 24,823 ha in the study region,

representing 38%of the total human-affected area by 2009 (Table
1). Forest regrowth resulted in a range of carbon densities (24-44
Mg C ha−1) based on forest ages of 2 to 11 y (SI Materials and
Methods). Nonetheless, the carbon density of secondary forest is
30.6 ± 16.7 Mg C ha−1, or approximately 60% to 70% lower than
the average carbon stocks for intact forests in the region. Inte-
grated over the 11-y study period, secondary regrowth accumu-
lated 0.812 Tg C, providing an 18% offset to gross emissions that
resulted in a net regional loss of 3.717 Tg C to the atmosphere.
Our results uncover multiple spatial scales of variation in car-

bon stocks throughout the region, and change our understanding
of how forest carbon is distributed and subsequently altered by
land-use change in the southwestern Amazon. To our knowledge,
this is the first study to detail regional-level variation in forest
carbon densities mediated by geologic substrate and forest type
(Figs. 2 and 3A). We also detected an interaction between geo-
logical controls on carbon storage and land-use effects on carbon
emissions: deforestation emissions dominated the flatter quater-
nary substrates that are easier to access for road-building and
farming. In contrast, degradation emissions from selective logging
occurred mostly on eroded tertiary surfaces that are topograph-
ically dissected and difficult to access (Fig. 2).
The observed trend of increasing carbon emissions since 2006

following the development of the Interoceanic Highway is pre-
viously unmeasured (Fig. 3B), but more revealing is the large
contribution of degradation to the total annual gross emissions for
the region. Degradation added an average of 47%more carbon to
the atmosphere than did deforestation alone, and increased in
step with deforestation during the recent period of heightened
land-use activity in the region. Degradation is diffusely distributed
throughout the forested landscapes of Amazonia and other trop-
ical regions, and only by combining very high-resolution airborne
LiDAR techniques with large-area satellite mapping can these
emissions be quantified and monitored over time.
The detailed statistical distributions of aboveground carbon

density were also previously unmeasured because the majority of
the region remains inaccessible on the ground. However, our
airborne measurements reveal highly skewed, often multimodal,
distributions of forest carbon. As a result, we contend that sam-
ples of forest carbon storage obtained with field plots, cannot
account for the spatial variation in carbon stocks, especially in the
context of the mosaic of anthropogenic land uses and resulting
carbon emissions.
In support of REDD, the Intergovernmental Panel on Cli-

mate Change (IPCC) (14) issued a default tier-I estimation ap-
proach of forest carbon density based on average carbon values
assigned for biomes. Applying the IPCC tier-I method to our study
region produced an estimated 587 Tg C in aboveground biomass,
whereas our spatially explicit mapping indicated just 395 Tg C
(Fig. 2). This difference results primarily from the fact that forest
carbon densities are not homogeneous at a variety of scales. Al-
though our regional carbon estimates are 33% lower than IPCC
tier-I estimates, the high-resolution, verifiable nature of our ap-

Fig. 3. (A) Distributions of aboveground carbon storage for the seven
common forest types found in the Peruvian Amazon, derived from airborne
LiDAR. (B) Annual emissions of carbon from deforestation and degradation
mapped from time-series CLASlite imagery and LiDAR data.

Table 1. Area of new land use and forest regrowth integrated from 1999 to 2009

Land use Total area, ha
Proportion of human-

affected area, %
Mean (SD) carbon
density, Mg C ha−1

Gold mining 3,207 4.9 16.7 (18.3)
Forest degradation* 17,740 27.3 35.6 (15.4)
Deforestation† 43,933 67.7 27.8 (16.9)
Secondary regrowth‡ 24,823 38.3 32.7 (7.5)

Mean aboveground carbon densities are reported for 2009.
*Forest degradation is dominated by selective logging in this region.
†Deforestation is dominated by clearing for cattle ranching and farming in this region.
‡Regrowth calculated from deforestation and disturbance mapped between 1999 and 2008.
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proach would likely yield increased investment per unit of carbon
(15, 16). At the national scale, most tropical countries will rely
initially on tier-I methods, which will generate large uncertainties
and lower confidence, and thus potentially lower carbon credits (4,
15, 17). Developing monitoring capacities at higher accuracies—
using procedures like those demonstrated here—will ultimately
provide increased carbon credit, boosted carbon sequestration,
and improved biodiversity protection.
The cost to implement this method of high-resolution carbon

stock and emissions monitoring is decreasing. Satellite data costs
are decreasing, and the major data sources are now free of charge
to end users. The cost for analyzing the satellite data for forest
cover, deforestation and degradation is also rapidly diminishing.
The Carnegie Institution is making its Landsat Analysis System
Lite (CLASlite) available for free to noncommercial organiza-
tions throughout the Amazon region (http://claslite.ciw.edu).
LiDAR is a powerful airborne imaging technology that, like aerial
photography in the 1970s and 1980s, is rapidly expanding through-
out the world for use across a range of environmental sectors. There
are now many airborne LiDAR mapping companies operating
in the Americas, Europe, Africa, Asia, Australia, and the Pacific
(http://www.airbornelasermapping.com). For this 4.3 million ha
analysis, the Carnegie Airborne Observatory (CAO) operated its
LiDAR, processed the data, and provided maps of forest structure
at a cost of less than $0.08/ha. More recent work in Madagascar
has reduced the cost to approximately $0.06/ha, and there exists
a strong economy-of-scale effect whereby larger-area projects prove
far more cost effective than small-area analyses. This runs opposite
to plot-level work, which increases in cost on a per-area basis.
Finally, the procedure tested here can be scaled up to the na-

tional level. We selected this particular 4.3 million ha area for
a variety of scientific purposes. The results can be directly ex-
trapolated with the addition of highly available satellite imagery
and CLASlite, and with no additional airborne or ground-based
work, to an area of approximately 60million ha based on the range
of forest types found in Peru. However, the uncertainty in the
regional variation of carbon densities applied to such a full

national-scale satellite map would be reduced with additional
LiDAR sampling throughout the region. Here we have reported
the results of high-resolution mapping of carbon stocks and
emissions in the Amazon region, and the approach is being im-
plemented by three western Amazon countries.

Materials and Methods
Our approach involves four steps: (i) regional mapping of vegetation type
and condition (forest cover, deforestation, degradation, regrowth) using
moderate-resolution satellite data; (ii) regionally stratified large-area sam-
pling of vegetation canopy 3D structure using airborne LiDAR; (iii) conver-
sion of LiDAR vegetation structural data to aboveground carbon density
using LiDAR allometrics developed at a limited number of field plots; and (iv)
integration of the satellite maps with the calibrated LiDAR data to set a re-
gional, high-resolution baseline carbon estimate, and mapping of carbon
emissions retrospectively and into the future.

Forest condition—including deforestation, degradation, and regrowth—
was assessed using the CLASlite (18) satellite mapping system with 30-m
Landsat imagery in nearly annual time steps from 1999 to 2009 (Figs. S1–S3).
Field validation surveys indicated that 2009 deforestation, degradation, and
secondary regrowth maps had errors of 0% to 1.2%, 1.9% to 6.4%, and
2.6% to 2.9%, respectively (Tables S1 and S2). A map partitioning the study
area into 26 vegetation classes, combined with CLASlite results, was used to
locate 27 LiDAR survey areas covering a total of 514,317 ha for collection at
a spatial resolution of 1 m or less throughout the 4.3 million ha region (Fig.
S1). The LiDAR data were collected using the CAO (19). Calibration and
validation of the airborne- and satellite-based estimates of aboveground
carbon density were carried out during the overflights. Detailed information
on each of these steps is provided in SI Materials and Methods.
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