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Previous studies have found that atmospheric brown clouds par-
tially offset the warming effects of greenhouse gases. This finding
suggests a tradeoff between the impacts of reducing emissions of
aerosols and greenhouse gases. Results from a statistical model of
historical rice harvests in India, coupled with regional climate
scenarios from a parallel climate model, indicate that joint reduc-
tions in brown clouds and greenhouse gases would in fact have
complementary, positive impacts on harvests. The results also
imply that adverse climate changes due to brown clouds and
greenhouse gases contributed to the slowdown in harvest growth
that occurred during the past two decades.

agricultural impact � air pollution � carbon dioxide warming �
climate change � South Asia

A ir pollution emissions from the burning of fossil fuels and
biomass have created extensive atmospheric brown clouds

(ABCs) of black carbon and other aerosols in many parts of the
world (1, 2). These clouds absorb solar radiation in the lower
atmosphere and scatter it back to space, thus reducing radiation
at the earth’s surface and partially offsetting surface warming
caused by greenhouse gases (GHGs) (2–4). One of the most
widespread ABCs on the planet cloaks the Indian subcontinent
and the northern Indian Ocean (5). (Among the dozens of other
papers on this subject, see ref. 6.) Recent research indicates that
this cloud has negatively affected not only surface radiation and
temperature in India but also rainfall (4, 7). ABCs reduce rainfall
through a combination of mechanisms: the decrease in surface
radiation reduces evaporation from the sea, the absorption of
radiation in the lower atmosphere heats and stabilizes the lower
atmosphere, and the higher concentration of aerosols above the
Indian Ocean north of the equator than south of it weakens the
latitudinal sea surface temperature gradient.

During 1930–2000, the observed cumulative increase in an-
nual mean surface temperature in India was 0.44°C, less than in
regions without ABCs, and it was smaller during the day, when
the cooling effect of ABCs is strongest (4). During 1960–1998,
monsoon rainfall was �5% lower than the 1930–1960 mean,
while surface radiation decreased by �0.42 Wm�2 per year (4).
Climate models reproduce these trends only if they include
ABCs in addition to GHGs (4).

The combination of the multiple climatic effects of ABCs with
the particular climatic sensitivity of the rice plant creates the
possibility that reductions in ABCs and GHGs could have com-
plementary, positive impacts on rice harvest instead of offsetting
impacts. Rice harvests in India and other parts of Asia are positively
correlated with rainfall (8, 9) and, late in the season, with solar
radiation (10–13). On the other hand, they are negatively correlated
with minimum (nighttime) temperature (10–12). Harvests might
thus receive a dual boost if both the drying and dimming effects of
ABCs and the warming effects of GHGs were reduced.

Only a few studies have examined the impacts of ABCs on
agriculture (14, 15). They have focused on the impact of solar

radiation on yield: quantity harvested divided by area harvested.
They estimate that the dimming effect of ABCs has reduced rice
yield by 6–17%. They have been criticized, however, for using
process-based crop-response simulation models, which might not
accurately reflect crop growth under actual field conditions (13).
A particular problem is an assumption that farmers apply
agricultural inputs at agronomically optimal levels, which arti-
ficially makes radiation the limiting factor on yield and thus
exaggerates the predicted impact of dimming. On the other hand,
by focusing on yield, the studies have ignored the potential
impacts of climate changes on area harvested (9), which could
cause them to understate the full impact of ABCs on harvest. No
previous study has examined the multiple impacts of ABCs on
agriculture or their interaction with the impacts of GHGs, in
India or any other country.

In view of the criticisms of studies based on crop-response
simulation models, we used multivariate regression methods and
historical data from nine major rice-growing states of India to
construct a statistical agro-economic model of rice harvest,
which we then coupled to a parallel climate model (PCM) to
simulate the historical impacts of ABCs and GHGs. The agro-
economic model consisted of two interrelated equations, a
production function and an area demand function. We predicted
the impacts of reductions in ABCs and GHGs on historical rice
production by running three alternative climate scenarios
through the agroeconomic model. We focused on harvest during
the wet season (kharif), which accounts for �90% of total annual
harvest.

Results
Regression Coefficients in the Agro-Economic Model. Table 1 shows
the estimated regression coefficients on the climate variables in
the two equations of the agro-economic model. See supporting
information (SI) for full regression results, including coefficient
estimates on the nonclimate variables. We found that just two
climate variables were statistically significant (P � 0.05) in
either equation: June–September rainfall (both equations) and
October–November minimum temperature (production func-
tion only). The signs of the coefficients were as expected: positive
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on rainfall (harvest is larger if there is more rain) and negative
on minimum temperature (harvest is smaller if minimum tem-
perature is higher). Given that ABCs have both drying and
cooling effects, the opposing signs indicate that the net impact
of ABCs on rice harvest is ambiguous. Because of the logarith-
mic specification of the model, the coefficients are interpretable
as elasticities: a 1% increase in climate variable j affects quantity
harvested or area harvested by �̂j%, where �̂j is the coefficient
on the variable. The absolute values of the coefficients on
June–September rainfall and October–November minimum
temperature are less than one, so these variables had less-than-
proportionate impacts on harvest.

The positive impact of June–September rainfall on harvest
and, to a lesser extent, the negative impact of October–
November minimum temperature are evident even in the ag-
gregate, raw data. Fig. 1 shows the annual anomalies in harvests
and June–September rainfall. We constructed the harvest anom-
alies by aggregating wet-season harvests across the nine states
and then detrending and normalizing the resulting aggregate
variable, so that it had a mean of zero and a standard deviation

of one. For June–September rainfall, we constructed the aggre-
gate variable by weighting rainfall in each state by the state’s
share of aggregate rice harvest, and then we detrended and
normalized that variable. As can be seen in Fig. 1, the peaks and
troughs of the two series largely coincide. The Pearson corre-
lation coefficient for the two series is �0.61 (P � 0.01). Fig. 2
shows the anomalies in harvests and October–November mini-
mum temperature, constructed using the same procedures. The
peaks in one series now tend to coincide with troughs in the
other, and the Pearson correlation coefficient is �0.26 (P �
0.12). October–November minimum temperature has a statisti-
cally significant (P � 0.05) impact on harvest only if we control
for June–September rainfall and other explanatory variables, as
in the regression results in Table 1.

In view of these results, we included only the coefficients on
June–September rainfall and October–November minimum
temperature from the production function, and June–September
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Fig. 3. Predicted impact of reductions in ABCs and GHGs on wet-season rice
harvest in a representative rainfed rice-growing region in India. Three hypo-
thetical changes are shown: both ABCs and GHGs reduced, with impacts on
both yield and area harvested (black); only ABCs reduced, with impacts
on both yield and area harvested (blue); and only ABCs reduced, with impact
on only yield (green).

Table 1. Regression coefficients on climate variables in
agro-economic model

Variable
Production

function
Area demand

function

Rainfall: March–May �0.027 0.011*
Rainfall: June–September 0.317*** 0.074***
Rainfall: October–November 0.013 �0.000
Minimum temperature:

June–September
0.662 0.135

Minimum temperature:
October–November

�0.865** �0.059

Solar radiation: October–November �0.048 0.005
Solar radiation: December �0.085 0.151

Production function shows the natural logarithm of quantity of rice har-
vested in thousand metric tons; area demand function shows the natural
logarithm of area harvested in thousand hectares. Climate variables are also
in natural logarithms. P values (two-tailed t tests): ***, P � 0.01; **, P � 0.05,
*, P � 0.1. Coefficients significantly different from zero at P � 0.05 are in bold.
See SI for results for nonclimate variables.
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Fig. 1. Anomalies in June–September rainfall (red) and wet-season rice
harvest (blue) in India. Data were aggregated across the nine predominantly
rain-fed rice-growing states in the country and then detrended and normal-
ized. Anomalies are expressed in terms of numbers of standard deviations. The
pattern indicates a strong positive correlation between the two series.
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Fig. 2. Anomalies in October–November minimum temperature (red) and
wet-season rice harvest (blue) in India. See Fig. 1 for explanation. In contrast
to Fig. 1, the pattern here suggests a weak negative correlation between the
series.

Auffhammer et al. PNAS � December 26, 2006 � vol. 103 � no. 52 � 19669

SU
ST

A
IN

A
BI

LI
TY

SC
IE

N
CE

EN
V

IR
O

N
M

EN
TA

L
SC

IE
N

CE
S

SE
E

CO
M

M
EN

TA
RY



rainfall from the area demand function, when we predicted the
impacts of hypothetical reductions in ABCs and GHGs on
historical rice production. We note that the insignificance of the
solar radiation variables could be a statistical artifact. The
December radiation variable became significant in the area
demand function, and nearly so in the production function, if we
excluded yearly fixed effects from the regressions (see SI). The
variable’s insignificance when we included the yearly fixed
effects might thus be due to its limited variation over time, not
to the lack of an actual impact on harvest. If so, then our
predictions understate the agricultural benefits of reducing
ABCs.

Impacts of ABCs and GHGs on Historical Rice Harvests. Fig. 3 shows
the year-by-year percentage impacts of hypothetical reductions
of ABCs and GHGs on historical rice harvests. When only ABCs
are reduced and only the yield effect is included, the differences
are mostly positive during the latter part of the period. This result
indicates that historical rice harvests would have been larger in
the absence of ABCs. Although the coefficient on October–
November minimum temperature in the production function
exceeds the coefficient on June–September rainfall (Table 1),
the parallel climate model (PCM) predicts that the elimination
of ABCs would increase rainfall much more than minimum
temperature (see SI), and so the net impact on yield tends to be
positive.

The differences are much larger when only ABCs are reduced
but the area effect is added to the yield effect. This finding indicates
that ABCs affected historical rice output mainly through the effect
of rainfall on area: in the absence of ABCs, wetter conditions would
have led to an expansion of rice area. Although the coefficient on
June–September rainfall in the area demand function is small
(Table 1), the area effect accumulates because the area demand
function includes lagged area harvested, and this causes the pre-
dicted increase in harvest to rise over time.

The differences are greatest when ABCs and GHGs are
simultaneously reduced and both the yield and area effects are
included. This finding indicates that historical rice harvest would
have been even larger if the reduction of ABCs had been
accompanied by a reduction in GHGs. The extra boost to the
harvest is due to the reduction in October–November minimum
temperature.

Table 2 compares the mean impacts during the first and second
parts of the period. It starts with 1966, which marks the beginning
of the era of modern rice cultivation in India, the ‘‘Green Revo-
lution.’’ Mean impacts differed significantly between the two parts
only when the area effect was included. The simultaneous reduction
of ABCs and GHGs would have increased mean annual rice harvest
by 6.18% during 1966–1984 and 14.4% during 1985–1998, with the
difference being highly significant (P � 0.01).

Discussion
The evidence of a greater impact by ABCs and GHGs during the
more recent period is interesting in view of historical trends in
Indian rice harvests (Fig. 4). Thanks to the Green Revolution, rice
harvests grew dramatically after the mid-1960s. They have grown
more slowly since the 1980s; however, the annual growth rate
peaked at nearly 3% in 1984–1985 and leveled off by the early
2000s. This deceleration has raised concerns that food shortages
could recur (16, 17). Many explanations for the deceleration have
been offered, including falling rice prices, deteriorating irrigation
infrastructure, soil degradation, stagnant technology on rain-fed
farms, and the technological frontier being reached on irrigated
farms (16). Our explanation, adverse regional climate change
caused by the combined effects of ABCs and GHGs, augments
these explanations. Previous statistical studies on the climate sen-
sitivity of Indian agriculture did not detect it for two reasons: they
ignored ABCs, and their sample periods ended in the 1980s, before
the deceleration occurred (18, 19).

Our estimates of the impact of just ABCs on rice harvest,
3.94% during 1966–84 and 10.6% during 1985–1998 (Table 2),
are within the range of the previous estimates cited earlier. They
differ, however, in several important ways: they are derived from
a statistical model based on historical data instead of a crop-
response simulation model, they account for both area and yield
effects instead of just the latter, and they reflect the impacts of
drying and cooling instead of dimming. As already mentioned,
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Fig. 4. Historical trend in wet-season rice harvest in India. MMT, million metric
tons.Observedvalues (black)are summedacross theninepredominantly rain-fed
rice-growing states in the country. The trend line (blue), a cubic polynomial
relating ln(harvest) toyear,wasfittedusingordinary least squaresregression.The
annual growth rate along the trend line peaked at 2.70% in 1984–1985.

Table 2. Mean predicted increases in wet-season rice harvest in response to reductions in
ABCs and GHGs

Hypothetical change Time period Means, % H0

Both ABCs and GHGs reduced, with 1966–1984 6.18 Reject (P � 0.01)
impacts on both yield and area 1985–1998 14.4

Only ABCs reduced, with impacts on 1966–1984 3.94 Reject (P � 0.01)
both yield and area 1985–1998 10.6

Only ABCs reduced, with impact on 1966–1984 0.97 Fail to
only yield 1985–1998 2.09 reject (P � 0.45)

Predictions refer to a representative rainfed rice-growing region in India and are drawn from Fig. 3. Means tests
were conducted using two-tailed t tests with unequal variances for the two time periods. For H0, means are equal
for the two periods.

19670 � www.pnas.org�cgi�doi�10.1073�pnas.0609584104 Auffhammer et al.

http://www.pnas.org/cgi/content/full/0609584104/DC1
http://www.pnas.org/cgi/content/full/0609584104/DC1


the omission of the impact of dimming perhaps causes our
estimates to understate the amount by which rice harvest would
have increased if ABCs had been reduced. Our estimates are
conservative for two additional reasons: they ignore the possi-
bility that farmers might have achieved even greater rice harvests
by adjusting other inputs besides area harvested (20), and they
ignore direct damage to rice caused by air pollution (21). Some
direct damage from aerosols might be reflected in the June–
September rainfall variable: heavy rains reduce the concentra-
tions of aerosols to which rice plants are exposed, and this could
contribute to the positive impact of the rainfall variable in the
regression equations. Because the estimates in Table 2 ignore the
fact that any incremental rice area would have displaced other
crops, they should not be taken as indications of the net impact
of ABCs on the overall Indian agricultural sector.

The combustion processes that generate aerosols also generate
GHGs. Our finding that simultaneous reductions in ABCs and
GHGs would provide benefits to rice farmers is thus reassuring. For
rice farming at least, we do not find evidence of a tradeoff between
the impacts of reducing ABCs and GHGs. Reductions in ABCs
would increase surface warming, but the impact would be mainly on
daytime temperatures, not on the night-time temperatures that
negatively effect rice, and it would in any event be outweighed by
a beneficial increase in rainfall. To reduce night-time temperatures,
reductions in GHGs are needed. We cannot say, of course, whether
this complementarity of impacts would also occur for other crops
in other countries. Understanding of the regional climate impacts
of ABCs remains limited, and the climate sensitivity of crops varies,
but at least we can say that a tradeoff is not inevitable.

Methods
Agro-Economic Model. To construct the model, we compiled
time-series data on agricultural and meteorological variables for
nine Indian states that receive monsoon rainfall during June–
September and have predominantly rain-fed farms: Assam,
Bihar, Karnataka, Kerala, Madhya Pradesh, Maharashtra,
Orissa, Uttar Pradesh, and West Bengal. These states account
for about two-thirds of India’s wet-season harvest.

The production function related annual rice harvest in each state
to area harvested, other agricultural inputs (labor, fertilizer, high-
yielding seeds, irrigation), and climate (rainfall, radiation, temper-
ature). Consideration of crop calendars and previous studies (8–13)
led us to test the significance of the seven climate variables listed in
Table 1. To analyze the impacts of climate on area harvested, we
also estimated an area demand function. This function related area
harvested in the current year to area harvested during the previous
year, prices of agricultural outputs and inputs, and the same climate
variables as in the production function. We estimated the area de-
mand function first, and used fitted values from it in place of the
observed values of the area harvested variable when we estimated
the production function. This two-stage procedure avoids statistical
biases that could result from the simultaneous determination of
quantity harvested and area harvested (22).

We allowed the intercepts in both equations to vary across
both states and years, to control for unobserved fixed factors
that could cause mean harvest to differ along those dimen-
sions. The yearly fixed effects implicitly detrend the variab-
les, with year-to-year changes not constrained to be equal,
as would be the case if we included simple time trends. In line
with previous studies (22), we expressed all variables in

logarithmic form. The sample period for estimating both
equations was 1972–1998, determined by data availability.
Additional details on the statistical model are presented in SI.

Climate Scenarios. We used output from the PCM developed by
the U.S. National Center for Atmospheric Research to define
the climate scenarios (23, 24). The output had been generated
for the study by Ramanathan et al. (4). We focused on
1961–1998, which is the period when there is evidence of
climate impacts due to ABCs (4). In view of the greater
reliability of the PCM at larger scales, we averaged the output
across grid cells corresponding to the nine states. Our predic-
tions thus refer to the entire rain-fed region of India, not
individual states.

We defined three scenarios. In scenario 1, we set the values
of climate variables equal to PCM output from ABC�1998:
Run 1, which includes the climate effects of both ABCs and
GHGs (and sulfates). This run best reproduces observed
climate trends in India. In scenario 2, we set the variables equal
to the average of PCM output across the eight ensemble
GHGs�SO4�1998 runs, which include the climate impacts of
GHGs (and sulfates) but not ABCs. Scenario 3 was the same
as scenario 2 except we replaced the PCM output for minimum
temperature with the mean of observed minimum temperature
during 1930–1960. The difference in rice harvest between
scenarios 1 and 2 provides a prediction of the historical impact
of reducing only ABCs, whereas the difference between
scenarios 1 and 3 predicts the impact of simultaneously
reducing ABCs and GHGs.

Given the two-equation structure of the agro-economic
model, we were able to decompose the impact into a yield effect
and an area effect. The yield effect refers to the change in harvest
when area harvested is held at its historical level, whereas the
area effect refers to the change in area harvested that occurs in
response to differences in climate variables between the scenar-
ios. We expressed both effects as percentage differences in rice
harvests between the scenarios. The yield effect for the com-
parison of scenarios 1 and 2 was given by

100 � ��
j
�Zjt

2

Zjt
1��̂j

� 1�,

where Zjt
1 and Zjt

2 are the values of climate variable j in year t under
scenarios 1 and 2, respectively, and �̂j is the corresponding coeffi-
cient from the production function. We derived this expression
from the production function, setting all variables besides the
climate variables equal to their observed historical levels. The
expression for the area effect was broadly similar but involved
lagged terms and coefficients from both the production and area
demand functions. The expressions for the comparison of scenarios
1 and 3 were the same as those for the comparison of scenarios 1
and 2 except that variables for scenario 3 were used in place of
variables for scenario 2.
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