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The Lam Phra Phloeng dam was constructed in 1963 
and is located in the Nakhon Ratchasima province. 
The dam has severely reduced water level caused by  
deforestation and agriculture at the upper land. Sedi-
ment cores were collected using a gravity corer. The 
210Pb activities were measured using alpha and gamma 
spectrometry and sedimentation rates were deter-
mined. The sedimentation rates decreased gradually 
from the upstream to the crest of the dam. The high 
sedimentation rate may be due to the inflow from the 
tributary as well as eroded materials that come from 
the upland area to the dam. 
 
Keywords: Lam Phra Phloeng dam, 210Pb, sedimenta-
tion rate. 
 
SEDIMENTATION and siltation in water supply dams are 
widespread problems affecting the viability of the water 
supply systems. The siltation results from settlement of 
sediments carried by rivers and causes a number of pro-
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blems such as rapid reduction of the ability to store the 
maximum quantity of water; promotion of weed growth 
on the increased area of shallow margins which might  
affect water quality; potential destabilization of the dam 
structure, and problems with water intake and distribution 
systems, and higher frequency of unacceptable turbidity 
of water. 
 The Lam Phra Phloeng dam, located in the Nakhon 
Ratchasima province, is one of the dams most severely 
affected by sediment accumulation in Thailand. During 
the past 10 years, deforestation in the upper catchments has 
reduced the forest area by 70% from 531 km2 in 1974 to 
160.25 km2 in 1985. Land use in the area changed rapidly 
from forest to agricultural land. The dominant crops are 
sugarcane and cassava. The land is tilled after harvesting 
and has become sensitive to sheet erosion. The area suf-
fers periodically from floods and droughts. Increased  
erosion since forest clearance has led to the increase of 
sediment load in rivers draining into the reservoir. As a 
result, sediment deposition in the dam gradually  
decreased the water storage capacity from 150 million m3 
in 1970 to 121 and 108 million m3 in 1983 and 1991 res-
pectively1. The suspended sediments in the water bodies 
also affect water quality and cause pollution because of 
various agrochemicals adsorbed by the sediments into the 
catchments.  
 All these natural and human manipulations have accel-
erated the change of sedimentation rate in the dam. A  
refined method is needed to describe processes of sedi-
ment accumulation. Artificial and natural radioisotopes 
like 137Cs and 210Pb were known to provide useful infor-
mation as tracers, which generate reasonable age esti-
mates for sediments and the determination of the 
sediment accumulation rates2. 
 137Cs interacts strongly with micaceous clay minerals 
in soils and sediments3. 137Cs (half-life 30.2 yr) is pro-
duced by nuclear fission and has been released into the 
environment as a result of nuclear weapon testing during 
1950–70, maximum atmospheric inputs in 1963, and the 
Chernobyl accident in 1986. However, nuclear weapon-
derived 137Cs inputs were shown to be significantly lower 
in the southern hemisphere than in the northern hemi-
sphere4; also inputs in the equatorial areas were less than 
those in the mid-latitude areas of Europe and North 
America5. The low 137Cs inventories associated with these 
areas of reduced receipt of fallout introduce measurement 
problems in terms of both detection limits and the long 
count times required to obtain results with an acceptable 
degree of precision. 210Pb (half-life 22.26 yr) is continu-
ously deposited on to soil and sediment surface. 210Pb is a 
natural product of the 238U decay series and is derived 
from the decay of gaseous 222Rn, the daughter of 226Ra. 
226Ra occurs naturally in soils and rocks and will generate 
210Pb which will be in equilibrium with its parent6. On the 
other hand, 222Rn gas produced from the decay of 226Ra 
can diffuse and produce 210Pb into the atmosphere. As 

fallout radionuclide 210Pb is rapidly and strongly adsorbed 
to the surface soil and is horizontally redistributed within 
sediments, it has no effect on core chronology7. 
 The total 210Pb that is present in the sediment has two 
components: first a minor part in equilibrium with 226Ra 
fixed to the sediment from 238U decay and secondly, 210Pb 
has a major part that is adsorbed on to the particulate 
matter, known as unsupported 210Pb. It is formed in the 
atmosphere after 222Rn decay and is deposited on the sur-
face with the particle materials. The exponential decrease 
of the accumulated unsupported 210Pb can be used to  
estimate sediment accumulation rate8. The required meas-
urements of 210Pb and 226Ra activity can be made conven-
iently by direct gamma spectrometry using low-energy, 
low background HPGe detector or by alpha spectrometry 
via its daughter 210Po.  
 The aim of this study is to estimate the sediment accu-
mulation rate in Lam Phra Phloeng dam by the applica-
tion of 210Pb measurements using the construction of the 
dam in 1963 as a reference. Such data are required for  
assessment of the magnitude of the problems and for  
better understanding of the factors involved. Soil conser-
vation measures and policies will hopefully be framed 
based on scientific knowledge.  
 The Lam Phra Phloeng dam located in Nakhon Ratcha-
sima province in the northeastern region of Thailand 
(Figure 1) was constructed in 1963 and became opera-
tional four years later. It is located in the upper part of 
Lam Phra Phloeng river in a small catchment area of 
820 km2 between 14°30′–14°36′N and 101°47′–101°50′E. 
The average annual inflow along this river is 
241.93 million m3. The asterisk in Figure 1 indicates the 
crest of the dam. The reservoir length is about 11 km and 
has a depth of 15–25 m. The retention of the dam is 263 
above mean sea level (msl) and the dead storage is 
240 above msl. The ecology along the east and the west 
sides of the dam is still a natural forest.  
 Sediment cores were collected in September 2006 using 
a gravity corer. Transparent PVC core tubes (diameter of  
 
 

 
 

Figure 1. Map of Lam Phra Phloeng dam showing sample location. 
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5.4 cm and length of 75 cm) were inserted into the sedi-
ment. Sediment cores were then sliced into segments of 
1 cm thickness by extrusion immediately and stored in a 
plastic bag. The outer part of each section was removed 
to avoid contamination from contiguous sections during 
the coring operation. The sediment was frozen at 4°C and 
transported in an ice box. In the laboratory, each slice 
was divided into subsamples to determine particle size, 
organic matter content and radioactivity. For particle size 
determination, the sample was stored in a refrigerator at 
4°C until determination. The rest of the sample was 
weighed and dried at 60°C until the sediment weight was 
constant. The sediment was pulverized in a centrifugal 
ball mill and sieved through a 125 μm stainless steel 
sieve to achieve uniform particle size. 
 Organic matter content was determined by weight loss 
after 4 h ignition at 550°C (ref. 9). Pore water content 
was determined by weight loss after oven drying. Dry 
solid particle density was measured by Ultrapycnometer 
1000 and ranged from 2.96 to 3.02 g cm–3.  
 Determination of 210Pb (via 210Po) was performed on 
3 g of dried sediment. After adding 209Po standard tracer, 
the sediment was digested by sequentially adding concen-
trated HNO3, HClO4 and HCl10. The Po isotopes were 
then autoplated on to a silver disc suspended in mild HCl 
solution. Adding ascorbic acid prevented oxidation of Fe 
and its deposition on the silver disc. Po activity was 
measured on an alpha spectrometry system (Ortec ion-
implanted, silicon, partially depleted, charged-particle  
detectors coupled to Tennelec multichannel analysers). 
Radioisotopes (241Am, 244Cu and 239Pu) were used for  
energy and efficiency calibration. 
 226Ra activity was determined by gamma spectrometry. 
The sample was placed in a sample ampoule of a dia-
meter of 10 and 30 mm height, weighed and sealed. The 
sample spectrum was measured after waiting for at least 3 
weeks to allow ingrowths of 222Rn progeny. The peak 
counts integrated at 351.9 and 609.3 keV of 214Pb and 
214Bi respectively11. The gamma-ray spectrometry system 
was a GWL series HPGe (high-purity germanium) co-
axial well with 0.5 mm aluminum absorbing layers (well 
wall) thickness, mounted in a vacuum tight cryostat 
(Model GWL-120230, crystal diameter 54.9 mm, well  
inside diameter 10 mm and active well depth 40 mm), a 
liquid-nitrogen Dewar and dipstick cryostat (Model  
HJ-GWL) and 1500 volts high voltage supply. A com-
puter-based MCA (DSPEC) and GammaVision-32 V 3.2 
Gamma-Ray Spectroscopy Software, a graphical user  
interface, that is ideal for manipulation and analysis of 
spectra with a personal computer was used. Radioiso-
topes (133Ba, 152Eu, 137Cs and 60Co) were used for energy 
and efficiency calibrations.  
 Total 210Pb activity was determined indirectly by the 
measurement of its alpha emitting grand daughter nuclide 
210Po. The total 210Pb activities are a ratio of 210Po and 209Po 
counts. Subtracting of supported 210Pb from total 210Pb 

can determine unsupported 210Pb. The activity of total 
210Pb is obtained by the formula12: 
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where N210 and N209 are the alpha counts of the polonium 
isotope; A(210Pb) the total 210Pb activities; A(209Po) the 
decay 209Po decay activity coefficient (24.575 dpm ml–1). 
 And finally, determination of 210Pb chronologies and 
sedimentation rate was performed using the constant  
initial concentration (CIC) model. This was originally 
developed by Goldberg in 1963, although its first applica-
tion to lake sediments was by Krishnaswamy et al.13. The 
CIC model assumes that, each stage of sediment accumu-
lation, has a constant initial unsupported 210Pb concentra-
tion. 
 
 ( / )
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where A0 is the 210Pb activity at water–sediment interface 
(Bq kg–1); A the 210Pb activity in the sediment (Bq kg–1); 
λ the decay constant of 210Pb (0.03114 yr–1); m the  
cumulative dry mass (g cm–2); w the sedimentation rate 
(g cm–2 y–1). 
 Profiles of 210Pb obtained from cores collected in the 
reservoir were used to calculate apparent sedimentation 
rates by assuming the steady-state deposition of 210Pb. 
Sediment activities are reported as functions of cumula-
tive dry mass per unit area (g cm–2) to eliminate the effect 
of porosity and dry bulk density changes with depth. The 
sedimentation rates were determined from the expression 
w = –λ/b, where b can be determined by the slope of the 
least squares fit to the natural log (unsupported 210Pb) 
versus cumulative dry mass curve, however in the figure, 
the unsupported 210Pb is shown in numerical value.  
 Organic matter content of dry sediment samples ranged 
from 8% to 14% with an average of 11%. This result 
could be explained as a regular trend of organic matter in  
 
 

 
 
Figure 2. Pathways by which 210Pb reaches sediments in lakes and 
reservoirs.  
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Figure 3. LPP2: a, Linear unsupported 210Pb; b, Porosity and organic matter. 
 
 

 
 

Figure 4. LPP3: a, Linear unsupported 210Pb; b, Porosity and organic matter. 
 
 
the agricultural lands where the farmers plant their crops 
every year.  
 In this study, the porosity of the sediments was deter-
mined, which is closely related to water content of the 
sediments and in addition depends on the density of solid 
matter14. The sediment compaction has great impact on 
the porous surfaces where there is high water content and 
low bulk density. Normalizing core section widths to that 
of the deeper regions where there is low water content 
and high bulk density can decrease section width of the 
upper region and decrease the apparent penetration of 
lead radionuclides. The porosity of sediments is usually 
high (>0.80) near the water–sediment interface. However, 
deep down it decreases and lowers the rate constant and 
changes in a narrow internal.  
 Sedimentation rates in each region of the dam as 
shown in Figure 2 were determined using vertical distri-
butions of unsupported 210Pb in sediment cores. Actually, 
eight sediment cores were collected for this study. How-
ever after 210Pb analysis, only four (LPP2, 3, 6 and 7) 
were successfully analysed for sedimentation rates. The 
other four did not show 210Pb activity decrease with depth 

and therefore did not fit the model. The estimation of 
sedimentation rates is described here (Figures 3–6).  
 The 210Pb activities at the surface of the cores LPP2, 3, 
6 and 7 did not decrease with depth and showed mixing 
behaviour due to biological or physical processes or both. 
The mixing layer could be observed from the surface  
till 5, 7, 14 and 4 cm depth of the cores LPP2, 3, 6, and  
7 respectively. Under these depths, the 210Pb activity 
showed decrease with depth and could be used for sedi-
mentation rate estimation. Many other cores from shallow 
water stations exhibit nonlinear behaviour deep down  
in the cores and cannot be used for sedimentation rate  
estimation.  
 Figure 3 shows 210Pb profile of LPP2. For LPP2, sedi-
ment core length is 31 cm. The irregular profile of 210Pb 
activity was from the surface to 5 cm. The sedimentation 
rates estimated from 210Pb profile from the depth of 5–
15 cm were 0.24 ± 0.02 g cm–2 yr–1. Unsupported 210Pb  
activity ranged from 33.83 to 59.29 Bq kg–1 and the poro-
sity ranged from 0.62 to 0.90. Supported 210Pb activity 
derived from activity at depth was 9.10 Bq kg–1. Table 1 
summarizes the core location, sediment properties and 
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Figure 5. LPP6: a, Linear unsupported 210Pb; b, Porosity and organic matter. 
 
 
 

 
 

Figure 6. LPP7: a, Linear unsupported 210Pb; b, Porosity and organic matter. 
 
 
 

Table 1. Core location, sediment properties and sedimentation rates of cores LPP2, 3, 6 and 7 

 Site of core 
 

Description LPP2 LPP3 LPP6 LPP7 
 

Location (UTM) 805720 E 804651 E 802303 E 801151 E 
  1615002 N 1614465 N 1612011 N 1609948 N 
Core range (cm) 31 43 51 26 
Porosity 0.62–0.90 0.70–0.90 0.71–0.89 0.64–0.89 
Surface mixed layer, SML (cm) 0–5 0–7 0–14 0–4 
Unsupported 210Pb activity (Bq kg–1) 33.83 ± 7.97 to 26.64 ± 6.34 to 28.92 ± 7.34 to 21.15 ± 5.11 to 
  59.29 ± 13.35 61.98 ± 12.81 55.27 ± 11.90 57.15 ± 11.96 
Supported 210Pb activity (Bq kg–1) 9.10 ± 1.38 5.05 ± 0.67 8.04 ± 1.05 7.01 ± 0.95 
Sedimentation rate (g cm–2 yr–1) 0.24 ± 0.02 0.50 ± 0.09 1.02 ± 0.20 0.87 ± 0.17 

 

sedimentation rates of cores LPP2, 3, 6 and 7 which  
relate to Figures 3–6.  
 As shown in Table 1, the relation between the cores is 
revealed in parameters such as porosity, surface mixed 
layer and sedimentation rate. The porosity of all cores is 
similar (range 0.60–0.90). The surface mixed layer of 
cores is also similar except that of LPP6 which is deeper 

than those of the other cores, i.e. 14 cm in LPP6 com-
pared to 4–7 cm in other cores. The depth of the  
surface mixed layer of the cores depends on the water  
in-flow velocity, gravitational forces and other factors 
such as bottom slope. Clearly, support was from the high 
sedimentation rate at LPP6; 1.02 ± 0.20 g cm–2 yr–1 which  
received sediment from the tributary inflow and eroded 
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materials from upland areas adjacent to the dam. Sedi-
mentation rate was continually increased with distance 
from the crest of the dam to the upstream.  
 It is clear from Figures 3–6 that total 210Pb activity was 
variable in each core. This is because the 210Pb  
deposited on land can be transported to nearby water  
resources adding to the 210Pb already present in water. 
Also natural, unsupported 210Pb in the atmosphere can be 
deposited everywhere; it may accumulate on land or in 
water. 210Pb activity in water is increased in the area near 
the end of upstream portion of the dam. As a result, the 
colour of the sediment upstream is red brick with coarse 
particles, whereas the downstream sediments are dark in 
colour and fine particles. 
 This communication demonstrates the application of 
210Pb activity in characterizing the important factors  
affecting sediment characteristics of Lam Phra Phloeng 
dam. The radioactivities, 210Pb and 226Ra were determined 
by alpha and gamma spectrometry. From the analysis,  
the sedimentation rate and its relationship in each part  
of the dam is established. The sedimentation rate  
estimated ranges from 0.24 to 1.02 g cm–2 y–1 and shows 
an increase from the crest of the dam to the upstream 
area.  
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A rare crustal xenolith of Mg–Al rock recovered from 
the P3 pipe of Wajrakarur Kimberlite Field in the 
Dharwar craton contains the minerals sapphirine, 
spinel and phlogopite. All the minerals have low iron 
contents with XMg values of 0.97 in phlogopite, 0.95–
0.96 in sapphirine and 0.87 in spinel. The (MgO, 
FeO) : (Al2O3) : SiO2 ratio in sapphirine is close to 
7 : 9 : 3. Sapphirine–spinel geothermometry indicates 
that the rock has undergone peak metamorphism in 
the amphibolite–granulite transition facies. Although 
sapphirine-bearing Mg–Al rocks are known from the 
northern and southern parts of Dharwar craton, this 
is the first report of such rocks from the central part 
of the craton. 
 
Keywords: Dharwar craton, kimberlite, Sapphirine, 
spinel, xenolith. 
 
SAPPHIRINE-bearing Mg–Al metamorphic rocks have  
attracted the attention of many geologists for more than a 
century on account of the interesting and complex mine-


