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Abstract

The question of how to assess trends in rainfall data is very relevant to that of climate change.  A short review of prior work 
revealed that there was little consensus on the methodology to be adopted.  Many methods had been tried and abandoned.  
Some methods had found comparatively wide acceptance although they employed a statistical software package that is not 
readily available, and which does not have tools common to other more widely available packages.  In the light of this review, 
it was decided to start from the inherent distribution of rainfall and develop a method for determining temporal trends based 
on the underlying distribution.  Data sets from 4 different locations and covering sample periods from every 5 min to every 
week were assessed.  In each case it was found that the data could be represented extremely well by a log-normal distribution, 
which meant that normal statistics could be applied to the transformed data.  When it was so applied, clear trends emerged, 
the significance of which could be readily judged via an F-test or t-test.  Some worked examples are provided. Attention is 
drawn to the possibility of estimating the likelihood of extreme events by this method.  It is also noted that the usual method 
of reporting rainfall as an arithmetic average overstates the precipitation, and that on statistical grounds use of a geometric 
mean is to be preferred.  
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Introduction

The problem of estimating trends emerged during an assess-
ment of precipitation chemistry using data from the US National 
Atmospheric Deposition Program [NADP]. NADP has estab-
lished some 200 monitoring stations across the United States 
(NADP, 2007a).  Some are no longer operational; a new station 
nearby usually replaces one no longer active.  Composite sam-
ples are collected once a week, comprising all the precipitation 
collected over the week. The samples are sealed and sent to cen-
tral laboratories for analysis. The raw data are available from the 
NADP website (NADP, 2007b), and are usually complete up to 
about 6 months before present.  
 The problem was to find a reliable means of determining the 
trend in rainfall with time.  There are many methods published 
in the literature, some of which are reviewed below.  But there is 
no general consensus of a methodology for what would, at first 
sight, appear to be a simple task.
 The NADP data have been extensively assessed by NADP 
staff. Long-term trends in the data have been evaluated (Leh-
mann et al., 2005; 2007) using the Seasonal Kendal Trend (SKT) 
test.  The SKT test is a non-parametric test for trend which is 
insensitive to the existence of seasonality (Hirsch et al., 1982). 
The difficulty of this approach is apparent from the description 
of the methodology, as applied to the flux of chemical species 
(i.e. rainfall x concentration) rather than rainfall per se:
 “Statistical seasons were based on meteorological seasons 
(December- February = winter, etc.) stratified into high and low 
precipitation sample volume classes. The high sample volume 
class included samples with volumes at or above the seasonal 
median sample volume. The low sample volume class included 

samples with volumes below the seasonal median sample volume. 
This subdivision by seasonal median sample volume resulted in 
eight statistical seasons in each year (e.g. high volume spring, 
low volume spring, etc.). To compare the statistical ability of this 
proposed method, trend analyses were also performed using one 
statistical season per year (annual averages) and four statistical 
seasons per year (seasonal averages).
 The SKT analysis was performed using the Environmental-
Stats Version 2.0 package of S-PLUS 6.1 (Millard and Neerchal, 
2000). The null hypotheses were that the trend is zero (Kendall’s 
tau statistic = 0), and that the seasonal taus were homogeneous 
(Kendall’s tau values were equivalent) over all statistical sea-
sons. An example of a homogeneous trend is one in which the 
trends are of equivalent magnitude and direction in all statistical 
seasons.
 The magnitude of the trend slope was determined by taking 
the natural log of the concentration data (as meq/ℓ) and deter-
mining the Sen’s median estimator (Gilbert, 1987; Helsel and 
Hirsch, 1992; Millard and Neerchal, 2000). The Sen’s median 
estimator of log-transformed concentrations provides a non-
parametric estimate of the percent change of concentration over 
the period. Equation (1) gives the trend magnitude in per cent 
change over analysis period.

	 ΔC	=	(eS -1)100t              (1)

where:
  ΔC per cent change in concentration over period 
 S Sen’s median estimator of trend slope
 t length of trend period (years)

Weekly samples whose analytical concentrations fell below 
reporting limit were handled as follows as per Helsel and Hirsch 
(1992). For the trend analysis, statistical seasonal averages that 
fell below reporting limits were set to zero. For the Sen’s median 
estimator calculations, statistical seasonal averages that fell 
below reporting limits were removed from the data set.” 
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 First, it has to be asked whether there is merit in reducing 
weekly data to seasonal data.  Much information is discarded 
in the process.  Moreover in relatively arid areas, seasons are 
anything but homogeneous.  Even in wet areas, the start and 
finish of a wet season can vary by several months. Therefore 
this approach discarded much data because it was non-homo-
geneous.
 Then there is the use of a module (EnvironmentalStats) of 
the ‘Enterprise developer’ S-PLUS.  Such software is not widely 
available, and there is always the fear that packages of this sort 
will lure the user into ‘plug-and-play’ statistics, feeding numbers 
in and getting numbers back with no means of checking the cor-
rectness of the answers.  For this work, the SKT test was initially 
developed in the widely available Excel spreadsheet.  However, 
McLeod et al. (1991) developed a Spearman partial rank correla-
tion test (SPRC) and compared it to the SKT test, finding it more 
powerful than the SKT test. It therefore has to be asked why the 
SKT test was employed at all.
 Sen’s median estimator (Sen, 1968) is a methodology for 
determining the equivalent of a regression coefficient in cases 
where the underlying distribution is not normal. In the present 
case, it is unclear why it was adopted, because no evidence is 
presented that the log-transformed data are not normally distrib-
uted, and, as is shown later, in fact it is sufficiently close to nor-
mal that the regression coefficient and its associated confidence 
interval is most unlikely to be affected by non-normality.
 A search was therefore initiated for alternative methods.  
Park et al. (2000) used both simple correlation methods and  
Brillinger’s (1989) nonparametric method to study rainfall 
trends in Korea over 220 years.  Because the early data had been 
obtained with an instrument that did not collect snow and had 
a minimum reading of 2 mm, they found it necessary to use 
2-month periods during late-spring to early-autumn.  Never-
theless, over such a long baseline, clear trends were evident for 
several such 2-month periods, significant at the 5% level. The 
problem with linear correlation is that any trend can extend to 
negative values, which is physically impossible. Brillinger’s 
method gave the existence of a trend but did not quantify it.  
 Widmann and Schar (1997) performed a principal compo-
nent analysis to study up to 90 years of continuous records of 
daily precipitation from Switzerland.  Empirical orthogonal 
functions were used to transform the data into a few key vari-
ables. Again, they employed seasonal averages, which worked 
well in the very seasonal conditions experienced in Switzer-
land. However, principal component analysis is something of a 
brute-force approach. The answers it provides are unique and 
independent of any hypothesis about data probability distribu-
tion. However, being non-parametric, no prior knowledge can 
be incorporated. Therefore if the data are reasonably normally 
distributed, the answers it provides are robust, whereas if the 
data are not normally distributed, even after normalisation to the 
mean (as is often employed), the answers can be misleading. It 
was therefore decided not to look further into this approach until 
more was known of the data distribution.
 Cheng et al. (2004) employed a non-parametric test derived 
by Pettitt (1979) to determine whether a change had occurred 
and if so what the significance of the estimate was. They also 
employed a rank correlation method to check the non-para metric 
test.  There were slight and unexplained differences between the 
2 approaches, and in this light it was decided not to pursue this 
approach. 
 Reinsel and Tiao have suggested using linear regression 
models to estimate trends. They assessed the serial depend-
ence in the noise via auto-regression (Reinsel et al., 1981; Tiao, 

1983; Reinsel and Tiao, 1987; Reinsel, 1989). They allowed for 
variables other than time. For instance, they estimated sea-
sonal effects, using sinusoidal curves and their harmonics. This 
approach suffered from the deficiencies identified earlier and 
was not pursued.
 Similarly, the study by Civerolo (2001) looked at monthly 
data in which the measured weekly concentrations were multi-
plied by the weekly precipitation and summed over the month.  
One of the problems with this approach is that there are many 
weeks when there is no precipitation, so that the monthly data 
can be misleading.  Moreover, the SO4

2-concentration data were 
first log-transformed to stabilise the variance of the time series 
and to reduce the non-linear effects before being subjected to 
filtering using a Kolmogorov-Zurbenko filter (Rao, 1994). 
 This approach was criticised by Hess et al. (2001), who found 
the Kolmogorov-Zurbenko filter had a very high probability of 
detecting a trend when there was no trend present.  Hess et al. 
(2001) found that ordinary linear regression had a similar power 
to other tests they evaluated, but that when there was definite 
seasonality, the SKT test and a t-test adjusted for seasonality 
were both stronger than ordinary linear regression.
 As this brief survey shows, there appears to be no agreed 
methodology for determining whether or not there is a trend in 
rainfall data.  Many methods have been presented, but all seem 
to suffer from identifiable deficiencies.  One of the problems is 
that none started from the underlying distribution of the data, 
which, classically, should be the starting point for all statistical 
analyses. Accordingly it was decided to try to develop a method-
ology based on the properties of the distribution of rainfall. 

Data sources

The 1st data set was collected by Nel and Sumner (2008) and 
kindly provided by Nel (2008).  A typical set comprised nearly 
8 000 records obtained using an automated tipping rain gauge 
with a cycle time of 5 min and a resolution of 0.2 mm of rain. 
At Royal Natal National Park, (28.68°S, 28.95°E, and 1 392 m  
a.m.s.l.), between 21 Nov 2001 and 10 January 2005, there were  
1 094 d when no rain was observed; 5 664 periods each of 5 min 
when 0.2 mm of rain were recorded; 1 127 similar periods when 
0.4 mm of rain were recorded, and so on up to 2 x 5 min peri-
ods when 10.0 mm was recorded. The total number of non-zero 
records was 7 931. 
 The 2nd data set was collected daily over a period of 30 
years between October 1978 and January 2008 at the NADP 
site FL03 Bradford Forest, (29.9748oN, -82.1978oW, and 44 m  
a.m.s.l.). This was typical of the daily data collected by the NADP 
(NADP, 2007b). There were 2 597 validated non-zero days of 
rainfall during this period and 7 393 d of zero recorded rain. 
The records were essentially continuous except for a gap of 63 
d between 17 Jan and 21 March 2006. Two samples were taken 
every 7 d, one typically from 05:00 to 18:00 and the next from 
18:00 to 05:00 the following day.  The 2 samples were therefore 
pooled so that all samples represented a full day, generally from 
05:00 to 05:00.
 The 3rd data set used to examine rainfall distribution was col-
lected weekly over the period between October 1979 and January 
2008 at the NADP site CA45 Hopland (39.0045oN, -123.086oW, 
and 253 m a.m.s.l.). There were 744 validated non-zero records 
during this period.
 The final data set was also collected weekly from Decem-
ber 1981 onwards at the NADP Site CA99 Yosemite, 37.7961oN, 
-119.8581oW and 1 393 m a.m.s.l. There were 681 validated non-
zero records during this period.
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 The distributions of each set of data were determined by 
sorting into ascending order and straightforward decomposition 
into classes.

The distribution of rainfall

The instantaneous (5 min) data distribution is shown in Fig. 1.  
The records for 0.2 to 0.6 mm are omitted as the abscissa scale 
then becomes so large that the form of the distribution is hid-
den. Note that the omission is purely for illustrative purposes; 
the ~6000 records in the 0.2 to 0.6mm range were included in 
the later analysis. Note also that while points are shown, the 
numbers on the ordinate are in fact the upper bounds of ranges.  
So a point shown as 2.0mm rain in 5 min is strictly the range 
>1.8 ≤2.0 mm. Again, for clarity, the range is omitted.  The same 
practice is followed in most distributions shown in the rest of 
this paper.

Figure 1
Rainfall measured in 5 min samples at Royal Natal National Park

 When the data are re-plotted on logarithmic co-ordinates, as 
shown in Fig. 2, there is a very clear relationship between 5 min 
rainfall and frequency, as shown in Fig. 2. Figure 2 includes the 
data which had been omitted for clarity in Fig. 1.

Figure 2
Log-log plot of data shown in Fig. 1

 Over nearly 2 orders of magnitude of measured rainfall, and 
4 orders of magnitude of frequency, a linear log-log relationship 
is observed with a regression coefficient of 0.9625, significant at 
the 0.1% level.
 In Fig. 2, the data ranges are selected from the untrans-
formed data. When the data ranges are selected from the log-
transformed data, the distribution approximates that of the 
familiar normal distribution, as illustrated in Fig. 3.  

Figure 3
Distribution of log-transformed data shown in Fig. 1  

 The distribution of the daily rainfall in Florida is shown in 
Fig. 4. The distribution is clearly not a normal distribution.

Figure 4
Frequency distribution of rain in various ranges in Florida, Site FL03

 However, the frequency of the logarithm of the daily rain-
fall is again linear with a significant correlation coefficient, as 
shown in Fig. 5.    

Figure 5
Frequency distribution of log10 (mm rain)

The 3rd data set, that from Site CA45, Hopland in California, 
plotted in a manner similar to that in Fig. 2, also gave a linear 
log-log relationship between volume and frequency, as shown in 
Fig. 5. In this case the correlation is poorer than in the case of the 
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5 min measurements given in Fig. 2, but this may well be caused 
by the fact that there are far fewer weekly data than there are in 
the case of the 5 min samples. 

Figure 6
Log-log plot of frequency of rain at Site CA45, Hopland

 The final data set, that also of weekly rainfall, from Site 
CA99, Yosemite, showed a very similar distribution, linear in 
the log domain.

 
Figure 7

Log-log plot of frequency of rain at Site CA99, Yosemite

 It is therefore clear that rainfall data are, to a close 
approximation, log-normally distributed, and that any 
trends should be determined using log-transformed data.  
It is also apparent that, once transformed, normal statistics 
may be employed to evaluate any trends and to determine 
the confidence limits on those trends. The frequency plots 
also give a reasonable estimate of the probability of very 
high precipitation events. Figure 2, for instance, shows a 
real likelihood of 10 mm in 5 min; Fig. 5 shows that over 
200 mm/d is likely in Florida; and Figs. 6 and 7 indicate 
that events of over 400 mm/week are perfectly possible in 
California. 

The estimation of temporal trends

The distribution of daily rainfall records from Florida as a 
function of time is shown in Fig. 8. Also shown are the trends 
determined on the entire data set by regression on the untrans-
formed data (‘Raw data’) and on the log-transformed data  
(‘Linear (Log10)’). 

Figure 8
Daily records of rain in Florida, 1979-2007, plotted 

logarithmically, with regression

 In this one can clearly see a discrete rather than continuous 
distribution at the lower end (<0.1 mm) of rainfall, which reflects 
measurement to an accuracy of 0.01 mm.  A logarithmic model is 
therefore by no means perfect, but as we have seen in the previ-
ous section, it represents the data to a very good approximation.
 There is a definite difference between the regressions in the 
linear and logarithmic domains.  The regression in the linear 
domain shows a slight downward trend over the period, but it is 
clearly incorrect to use linear regression on the untransformed 
data, for the very reasons clearly identified by Sen (1968).  In 
contrast, the regression in the logarithmic domain reveals an 
obvious trend. The question is what exactly this trend means.
 Clearly the noise in the data is such that, at any one point in 
time, the regression is a very poor estimator of the value at that 
point in time.  But trends are not concerned with values at points 
in time, but with the change in the mean value over time.
 In essence, one is seeking a measure of the change in the 
sample mean, the variance of which, sm

2, will be given by:

If the degrees of freedom, n, are large, then the variance of the 
sample mean will be far smaller than the variance of the individ-
ual sample. Thus the slope of the regression line can indeed esti-
mate how the sample mean changes locally. And it is the slope 
which gives the desired trend. There is no need to filter the data 
in any way; no need to be concerned with a poor level of correla-
tion between seasons; and even quite large gaps in the data can 
be accommodated without seriously affecting the significance of 
the slope so determined. 
 There are 2 possible tests for the significance of the regres-
sion, namely the F-test and the t-test.  Table 1 gives the calcula-
tion of F.

TAbLe 1
Calculation of significance of the regression of 

log-transformed data of Fig. 7
 Degrees 

of 
freedom

Sum of 
squares

Mean 
squares

F Signifi-
cance 

Regression 1 14.16753 14.16753 38.73972 5.629E-10
Residual 2 595 949.0194 0.365711
Total 2 596 963.1869    

R² = 0.9097
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 The value of F is so high, and the significance so low, that 
there can be no doubt that the trend in the data is real.  
 The t-test, comparing the 1st and 2nd halves of the data, gives 
an even greater significance:

TAbLe 2
Calculation of the significance via t-test

 1st  half 2nd  half
Mean 0.48272215 0.408767
Variance 0.40600421 0.382015
Observations 1508 1508
T-test 1.6553E-13

The regression line is of the form:

 log10 (rain)	=	0.16482-(2.4955x10
-5).D

where:
  D is the time in days after 1-01-1900  

For the Florida data, the change in rain over the period sampled 
is given in Table 3.

TAbLe 3
Calculation of average daily rain at Florida station FL03

Date D Log10 rain Rain, mm
10 Oct 1978 28 773 -0.5530 7.11
19 Feb 2008 39 497 -0.8208 3.86

 Obviously, there are large errors in these estimates of the 
average rain, but the trend is obvious – there has been a signifi-
cant drop at this station.  Other stations in Florida have shown an 
equally significant increase in rainfall.
 Several questions may be asked. For instance, is this an 
artefact of the choice of end dates? The answer is ‘no.’   It was 
quite simple to repeat the analysis with subsets of the data, with 
start dates and end dates at different times of the year.  While 
there is limited seasonality at this station, on average winter 
tends to be drier than summer, but a significant decreasing 
trend over the sample period was shown whether the period 
started in winter and ended in summer, or vice versa. Was there 
any impact from the missing 3 months? Changing the end date 
by over 2 years, to October 2005, dropped the value of F to 
29.3434, with a slight drop in the significance to 6.66E-08, both 
of which are negligible considering that about 10% of the data 
were ignored.
  The 3rd set of data was the monthly NADP data from the 
Californian Site CA45, Hopland.  The linear data, smoothed by 
averaging over 7 successive weeks, are shown in Fig. 9. It is clear 
that this has a marked seasonality, with winter rainfall sharply 
higher than that in summer.  
 Some idea of the difficulty of accounting for seasonal effects 
may be gained from the fact that the peak rainfall, 39 mm, in 
February 1994, was close to the minimum, 34 mm, in June 2005. 
While the peaks look sharp, they occur as early as October and 
as late as March. It is for these reasons that attempts to correct 
for seasonality are plagued with difficulties.
 Repeating the exercise with a logarithmic plot of the data 
for Hopland gives the picture shown in Fig. 10, with a very clear 
trend of increasing rainfall.  
 The F-test of this data shows that this trend is highly signifi-
cant, as illustrated in Table 4. The level of significance is some-

what lower than in the case of the daily data because the sample 
size is so much smaller.

TAbLe 4
Calculation of significance of the regression of Fig. 10

 Degrees 
of 

freedom

Sum of 
squares

Mean 
squares

F Signifi-
cance 

Regression 1 5.23044 5.23044 11.398 0.000775
Residual 713 327.2012 0.458908
Total 714 332.4317    

The average rainfall increased from about 10.8 to 21.4 mm/week 
over the sample period, although again it must be noted that 
there are large statistical errors on both these estimates.  How-
ever, the increase was again statistically significant in terms of 
the t-test as shown in Table 5 – a value of ‘t’>3.9 is significant at 
the 99.95% level.

TAbLe 5
Calculation of Student’s ‘t’ for two halves of data of Fig. 10
 1st  half 2nd  half Difference Sm t

Mean 1.07728 1.274903 0.197623 3.905
Variance 0.518025 0.396187 0.050605
Observations 357 357

 The final set of data, from Site CA99 Yosemite, is shown 
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in a logarithmic plot in Fig. 11.  In this case it seems doubtful 
whether a trend exists – there may be a slight increase in rainfall 
over the period, but the slope of the regression line is not nearly 
as marked as in earlier cases. 

Figure 11
Weekly records of rain in California, Site CA99, 1981-2007, 

plotted logarithmically, with regression

 An F-test of the data confirms the visual impression, that 
there is no significant trend over the period, as shown in Table 6. 

TAbLe 6
Calculation of significance of the regression of Fig. 11

 Degrees 
of 

freedom

Sum of 
squares

Mean 
squares

   F Signifi-
cance 

Regression 1 0.586263 0.586263 1.0408 0.3080
Residual 679 382.4676 0.563281
Total 680 383.0538    

 The significance indicates that there is >30% chance that any 
trend shown arises from random effects.  In this case, however, 
the t-test estimates that the trend is significant at the 98% level. 
This would seem, on the available evidence, to be a case of a 
false positive.

Discussion

A number of attempts to employ published methods to deter-
mine trends in rainfall data failed.  It was noted, however, that 
no one appeared to have examined the underlying distribution 
of the data, but had set about the analysis as if the distribution 
were of no moment. 
 When a number of data sets were examined, a clear logarith-
mic signal appeared.  The sort of log-log relationship shown in 
Fig. 2 has re-appeared in a number of guises.  This would appear 
important from the point of view of flood prediction – given such 
a linear relationship, the likely upper limits on the rate of pre-
cipitation emerge directly.  Of course, it is difficult to imagine 
widespread use of recording gauges such as that employed to 
generate the data from which Fig. 2 was derived, but all the data 
show a similar pattern.  
 This underlying logarithmic relationship carries through to 
the frequency distributions such as illustrated in Fig. 6.  What 
these imply is that one cannot employ normal statistics to evalu-
ate trends in rainfall – arithmetic means have no useful purpose 
when assessing distributions such as those in Fig. 3. The arith-
metic mean cannot tell what the most likely condition will be, 

nor what the likelihood of an extreme event may be.  One is 
forced to use a distribution such as the logarithmic, in which 
there is a closer relationship between the most likely (modal) and 
average event, and where the standard deviation gives a reason-
able idea of the magnitude of the extreme event.
 This, of course, calls into question the usual method of 
reporting the quantity of precipitation as an arithmetic average.  
On statistical grounds, use of a geometric average is much to be 
preferred, as the arithmetic average of log-normally distributed 
data is biased high.  To do so would mean discarding several 
centuries of data, so that such a step is probably impractical.  It 
does, however, merit serious consideration, as a high bias can 
lead to planning errors and the under-provision of water sup-
plies.  
 Repeated testing on a wider range of data than it has been 
possible to consider here has shown the utility of this approach.  
It appears robust – when an F-test of the log-transformed data 
indicates a trend, other measures will usually confirm it, whereas 
those other measures may either miss a trend or indicate one that 
is not in fact present, as in the example given here for the data of 
Site CA99. It also appears reasonably sensitive. The method was 
applied to data from 154 stations, and gave significant (>90%) 
increases in rainfall at 28 stations, significant decreases at 55, 
and no significant change at 71, over the period January 1984 to 
December 2006. If the estimated change in the log-mean rainfall 
was ~10%, in 70% of the cases the change was significant.  If 
the estimated change was ~20% or greater, in every case it was 
highly (>99%) significant.
 These findings largely follow on from those of Hess et al. 
(2001), except that work focused on the application of linear 
regression to the linear domain.  One of the difficulties of such 
an approach is that any attempt to extrapolate a falling trend 
must ultimately lead to negative values, something which is 
impossible in the logarithmic domain.  
 The methodology has the additional benefit of not requiring 
corrections for seasonality. As long as the data are reasonably 
continuous, changes with season are merely another source of 
noise.  
 Importantly, simplicity has great charm. The experience 
gained with attempts to determine trends using both parametric 
and non-parametric methods, or of employing filters, was salu-
tary indeed.  Dealing directly with cold, hard, raw data became 
a pleasurable experience after hacking through those woods.

Conclusions

The log-transformation of rainfall data gives rise to a dis-
tribution that is reasonably close to normal, so that normal 
statistics can be applied reliably to the transformed data.  In 
contrast, the very skew nature of the untransformed data 
makes normal statistics inapplicable. This has given rise to 
a range of methods which this study found to be of doubtful 
utility, confirming the earlier findings of Hess et al. (2001).  
Both the F-test and t-test to determine the significance of the 
trend gave good measures of the significance of the trends 
observed.  It must be stressed that it is the trend which is 
robust, effectively the slope of the line of the regression, and 
not the value of the variable at any point along the trend, 
which, because of the noisy signal, has a high variance asso-
ciated with it. The frequency distributions also are linear, 
which suggests a method for estimating the maximum rate 
of precipitation, although this has not been widely tested in 
this work. 
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