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Our new data address the paradox of Late Ordovician glaciation
under supposedly high pCO2 (8 to 22× PAL: preindustrial atmo-
spheric level). The paleobiogeographical distribution of chitinozoan
(“mixed layer”) marine zooplankton biotopes for the Hirnantian
glacialmaximum (440Ma) are reconstructed and compared to those
from the Sandbian (460Ma): Theydemonstrate a steeper latitudinal
temperature gradient and an equatorwards shift of the Polar Front
through time from 55°–70° S to ∼40° S. These changes are compar-
able to those during Pleistocene interglacial-glacial cycles. In com-
parison with the Pleistocene, we hypothesize a significant decline
in mean global temperature from the Sandbian to Hirnantian,
proportional with a fall in pCO2 from a modeled Sandbian level
of ∼8× PAL to ∼5× PAL during the Hirnantian. Our data suggest that
a compression of midlatitudinal biotopes and ecospace in response
to the developing glaciation was a likely cause of the end-Ordovi-
cian mass extinction.

chitinozoans ∣ Ordovician ∣ zooplankton biotopes ∣ Hirnantian glaciations ∣
climate belts

The Hirnantian glaciation (∼440 Ma) was a discrete event of a
few hundred thousand years (1) during the longer Early

Paleozoic Ice Age (2). A Laurentide-scale continental ice sheet
was located in the Southern Hemisphere despite previous pCO2

estimates ranging from 8 to 22× PAL (preindustrial atmospheric
level (3–6); for a full review, see SI Text). The Hirnantian glacia-
tion is linked to one of the major mass extinctions in the Phaner-
ozoic (7). New causal hypotheses for the Hirnantian glaciation
(2, 8) draw on a comparison with Pleistocene glacial maxima, dri-
ven by orbitally forced ice margin feedback mechanisms (9, 10)
and set against a background of long-term pCO2 decline (11).
Glaciations during the late Pleistocene resulted in a steepening
of the latitudinal temperature gradient and a shift in the position
of the Polar Front from ∼60° to ∼40 °N (12, 13). It is therefore
predicted that as the Hirnantian ice sheet grew and the intensity
of the South Polar high pressure zone increased, there would
be an equatorward shift in the location of the Polar Front and
adjacent climate belts (14).

Stable oxygen isotope data from conodonts suggest equatorial
temperatures approached modern values from the Middle
Ordovician (15; see ref. 16 for an alternative explanation), a view
supported by our previous work on plankton distribution (17, 18).
Proxy paleoclimate maps reconstructed for the Sandbian
(∼460 Ma), marine zooplankton (graptolite and chitinozoan)
biotopes, and general circulation models (GCMs) show that
tropical sea surface temperatures (SSTs) and austral latitudinal
temperature gradients were similar to present-day, and that the
Polar Front lay between 55° to 70° S (5, 6, 17, 18; Fig. 1). These
maps support GCMs in which Sandbian pCO2 was set at 8×

PAL (5). A GCM experiment parameterized with the same
pCO2 value, high relative sea level, and a modern equator-to-pole
heat transport (6) returns a mean global surface temperature pre-
diction of 15.7 °C for the Sandbian. Energy balance models (19)
suggest that the elevated pCO2 levels of 8× PAL could have been
balanced, to a large degree, by reduced solar flux from a “faint
young Sun” (20) to produce mean global surface temperatures
that approach themodern. All this is consistent with the early Late
Ordovician (Sandbian) being a “cool” world sensu Royer (21).

SST maps derived from a Hirnantian GCM (assuming pCO2 of
8× PAL and a low relative sea level) indicate a steepening of the
temperature gradient relative to the Sandbian (5; Fig. 1). How-
ever, key uncertainties remain relating to the parameterization of
Ordovician GCMs (17, 18) and these have never been indepen-
dently tested. Here we present a compilation of the distribution
of chitinozoan zooplankton biotopes during the Hirnantian that
we use to reconstruct a proxy SST map and hence to map the
position of critical climate boundaries as the Earth moved into
the glacial maximum of the Early Paleozoic Icehouse. We use this
information to evaluate the validity of Hirnantian GCMs and
estimates of Hirnantian global surface temperatures and for
qualitative assessments of pCO2.

Our primary analysis is the same as that used in our previous
studies (17, 18), but here it is based upon a unique compilation of
published chitinozoan species presence/absence data for the
glacial Hirnantian (Fig. S1). Suitable collections for this interval
are largely restricted to continents that fringed the southern part
of the Early Paleozoic Iapetus Ocean, within the Southern Hemi-
sphere (Fig. 2).

Results
Fig. 3 shows the distribution of chitinozoan biotopes and the
inferred climate belts during the Hirnantian. The boundary
between the Tropical and Subtropical chitinozoan biotopes lies
between 5° and 20° S; the southern edge of the Subtropics is at
25° S and the northern edge of the Subpolar biotope is at 30° S.
The Transitional biotope lies between 25° and 30° S. The Polar

Author contributions: T.R.A.V., H.A.A., M.W., J.A.Z., J.V., and T.S. designed research;
T.R.A.V. performed research; F.P., J.N., and T.J.C. contributed new reagents/analytic tools;
T.R.A.V., H.A.A., M.W., and K.S. analyzed data; T.R.A.V., H.A.A., and M.W. wrote the paper;
and J.V. and T.S. supervised the project.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.K. is a guest editor invited by the Editorial Board.
1T.R.A.V., H.A.A., and M.W. contributed equally to this work.
2To whom correspondence should be addressed. E-mail: Thijs.vandenbroucke@
univ-lille1.fr.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1003220107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1003220107 PNAS ∣ August 24, 2010 ∣ vol. 107 ∣ no. 34 ∣ 14983–14986

G
EO

LO
G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003220107/-/DCSupplemental/pnas.1003220107_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003220107/-/DCSupplemental/pnas.1003220107_SI.pdf?targetid=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003220107/-/DCSupplemental/pnas.1003220107_SI.pdf?targetid=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003220107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003220107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003220107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003220107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003220107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003220107/-/DCSupplemental


Front, i.e. the northernmost extent of the South Polar fauna, lies
between ca. 35° and 40° S.

Comparing the distribution of equivalent chitinozoan biotopes
in the Sandbian and the Hirnantian reconstructions, the following
key findings are reported:

i. An expansion of the Polar biotope and equatorwards shift of
the Polar Front from 55°–70° S to ∼40° S. This shift has the
consequence of narrowing the Subpolar biotope and inferred
climate belt (Fig. 4).

ii. Within the error of our analysis there is a minimal change in
the width of the Tropical and Subtropical climate belts.

iii. Species richness within biotopes appears to correlate with
latitudinal extent. The narrower Hirnantian Subpolar biotope
has reduced species richness (9 species compared to 35 species

in the Sandbian, see ref. 18), while the more extensive Hirnan-
tian Polar biotope has an increased species richness of 19
species compared to the 4 species identified with certainty
in Sandbian Polar faunas (18).

iv. Hirnantian chitinozoan biotope distribution indicates a stee-
per latitudinal temperature gradient than would be predicted
from equivalent hypothetical plankton provinces derived from
the GCM with the lowest pCO2 estimates (Fig. 3 C and E).

Discussion
There is an ongoing debate as to how Hirnantian continental
scale ice sheets could exist at high pCO2 levels of 8 to 22×
PAL (3–6; SI Text). Herrmann et al. (22) identified this issue
and addressed it using coupled ice sheet and atmospheric
GCM modeling but concluded that initiation of glaciation was
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possible at the lower end of these estimates. The lack of well-
dated Late Ordovician direct pCO2 proxies (21) hampers a
critical evaluation of these modeled values. Furthermore, this
paradox between climate state and assumed pCO2 concentrations
is exacerbated by recent studies that conclude that Earth’s

climate, in the Paleozoic and Pliocene, was more sensitive to
atmospheric CO2 than previously thought (23, 24). Our results
[point (iv) above] show a variance between our zooplankton maps
and the hypothetical distributions of plankton provinces
predicted by the SSTs derived from the GCM. This variation is
less for the climate model with the lowest pCO2 of 8× PAL
and implies a reparameterization of the GCM is necessary,
e.g. by using other pCO2 levels. Here we provide a qualitative
assessment of what Hirnantian pCO2 may have been.

Our Late Ordovician zooplankton biotope map and climate
belt reconstruction shows a similar response of the Earth’s
climate-ocean system during the Hirnantian glacial maximum to
that reported for Pleistocene glacials. As the Hirnantian ice sheet
grew, the latitudinal temperature gradient steepened and the aus-
tral Polar Front shifted to ∼40°S. The scale of shift in position
of the Polar Front matches that documented during Pleistocene
glacial maxima and associated Heinrich events (12, 13) and is
consistent with independent studies that show a coeval northward
shift in the Intertropical Convergence Zone towards the Hirnan-
tian (14). During Pleistocene glacial maxima the boreal Polar
Front moved from ∼60°N to ∼40°N as the Laurentide ice sheet
grew (12, 13) with a concomitant fall in mean global surface
temperature of between 3° and 5 °C [based on estimated cooling
between the present-day and the Last Glacial Maximum (LGM)]
(25) and a reduction of pCO2 from 280 ppm to 180 ppm (thus at a
ratio of 0.64; see ref. 11). Loi et al. (26) calculated a fall in
Hirnantian ice-equivalent sea level of at least 148 m, relative
to the earliest Hirnantian and 222 m relative to the late Katian.
These are values that are equivalent to those of the total ice cover
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of the LGM (190–210 m) (26). We therefore hypothesize that the
Sandbian to Hirnantian transition resulted in similar changes in
ice cover, and thus ice-albedo feedback, as between Pleistocene
interglacials and glacials. Combining this with our results that
identify similarities in amplitude of Polar Front shift, we predict
a similar fall in Hirnantian mean global surface temperature as
during Pleistocene interglacials–glacials, from 16 °C pre-Hirnan-
tian (Sandbian) to values between ∼13 °C and ∼11 °C during the
Hirnantian. Assuming the relationship between temperature and
pCO2 was the same during the Ordovician and the Pleistocene
(see ref. 21) then we further hypothesize that pCO2 fell from
∼8× PAL during the Sandbian to ∼5× PAL in the Hirnantian.

Conclusions
Our data show that Late Ordovician SST gradients were much
more similar to modern oceans than previously hypothesized.
Elevated pCO2 (8× PAL) for the early Late Ordovician appears
to have balanced the reduced solar flux from a fainter Sun,
resulting in mean global surface temperatures that approach
those of the present day. Severe cooling resulted in an equator-
ward shift in the position of the Hirnantian austral Polar Front
from 55°–70° S to 40° S. This is deduced from an equatorward
expansion of the Polar biotope and is an equivalent shift to
that between Pleistocene interglacials and glacial maxima. We
conclude that during the Hirnantian glaciation there was an
equatorward shift in climate belts, commensurate with a fall in
mean global surface temperature from ∼16 °C to ∼13–11 °C and,
assuming an equivalent temperature/pCO2 relationship for the
Pleistocene, a fall in pCO2 from 8× PAL to ∼5× PAL. The onset
of Hirnantian glaciation was likely controlled by mechanisms and
feedbacks that lead to falling pCO2. Significantly, our data

suggest that a disruption of marine habitats and a net reduction
in ecospace in midlatitude biotopes, as a consequence of rapid
climate change, emerges as a likely cause of the mass extinction
in the zooplankton at the end of the Ordovician.

Materials and Methods
A detailed time slice definition of the glacial Hirnantian (extraordinarius and
lower persculptus graptolite biozones, Fig. S1) and the literature sources
for the chitinozoan data of each site in this compilation are given in the
SI Materials andMethods. The paleolatitudes for the localities are taken from
themost recent paleogeographic reconstruction of Torsvik and Cocks (ref. 27,
updated from base maps published in ref. 28; see SI Text for a full justifica-
tion). The relatively small variance between this and earlier paleogeographic
reconstructions (Plate tectonic maps and “Point tracker” software by C. R.
Scotese, PALEOMAP Project; http://www.scotese.com) is used to define a
5° paleogeographical error for most areas, but the position of some of
the Gondwanan localities varies by ca. 10° (Fig. 3). Chitinozoan biotopes
are defined using a combination of Detrended Correspondence Analysis,
TWINSPAN (two way indicator species analysis), and constrained seriation
(17, 18; SI Materials and Methods; and Figs. S2–S4). The distribution of chit-
inozoan biotopes is then compared to the hypothetical positions of modern
zooplanktonic (foraminifer) provinces [SST boundaries from Kucera (29)],
mapped onto the Hirnantian paleogeography using the SST predictions from
the GCMs (5) (Figs. 1 and 3).
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