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Abstract

Climate change disrupts ecological systems in many ways. Many documented responses depend on species’ life histories,
contributing to the view that climate change effects are important but difficult to characterize generally. However,
systematic variation in metabolic effects of temperature across trophic levels suggests that warming may lead to
predictable shifts in food web structure and productivity. We experimentally tested the effects of warming on food web
structure and productivity under two resource supply scenarios. Consistent with predictions based on universal metabolic
responses to temperature, we found that warming strengthened consumer control of primary production when resources
were augmented. Warming shifted food web structure and reduced total biomass despite increases in primary productivity
in a marine food web. In contrast, at lower resource levels, food web production was constrained at all temperatures. These
results demonstrate that small temperature changes could dramatically shift food web dynamics and provide a general,
species-independent mechanism for ecological response to environmental temperature change.
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Introduction

The ocean is a dynamic part of the global climate system. The

temperature of the sea surface, where almost 50% of the world’s

primary productivity occurs [1], varies regionally as the result of

changing surface air temperatures, currents, and upwelling of

deeper water. Though links between climate conditions and

pelagic food web productivity and structure have long been of

interest to scientists [2], effects of physical conditions on secondary

and tertiary productivity (hereafter: consumer productivity) have

seemed too context dependent to allow general predictions [3–5].

The prevailing conceptual framework for understanding effects

of ocean temperature on food webs is based on the view that

consumer production is predominantly controlled indirectly by

temperature effects on primary production [6,7]. According to this

model, increased primary productivity and net autotrophy also

increase CO2 uptake of the whole food web [8,9]. Yet recently

developed metabolic theory and a meta-analysis indicate that

heterotrophic (respiration-limited) metabolism is more sensitive to

changing temperature than autotrophic (photosynthesis-limited)

metabolism and production (Figure 1A) [9,10], suggesting stronger

consumer-driven control with warming. Greater consumer control

of primary production would lead to increased heterotrophy and

less phytoplankton standing stock (Figure 1B-ii). In either model,

the response of food web productivity and structure to changing

environmental temperature may be determined by general

processes and not the specific responses of component species,

and thus could represent a critical step forward in efforts to

forecast the impacts of climate change on ecological communities

[11,12].

Temperature-driven shifts in food web productivity and

structure are limited ultimately by resource availability, and

therefore must be considered in realistic nutrient supply contexts

(Figure 1B) [5]. In the ocean, the same physical processes that

drive temperature patterns also influence resource availability.

Temperature-driven stratification isolates surface waters from

cool, nutrient-rich deeper water, and because biological produc-

tivity at the sunlit surface depletes available nutrients, temperature

and nutrient supplies are usually negatively correlated [5].

Nutrient limitation directly constrains primary production, while

metabolic responses to temperature influence both photosynthetic

and respiratory processes, and thus primary and consumer

production. The metabolic effects of temperature therefore should

be different and complementary to constraints imposed by

resource availability.

To understand the combined effects of temperature and

resource availability on food web biomass (gC L21) and

productivity (gC L21 yr21), whole food web responses to variation

in both factors need to be assessed. Using a coastal pelagic food

web of phytoplankton producers and bacterial and zooplankton
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(.63 mm) consumers, we experimentally tested the effects of non-

lethal temperatures and resource availability on food web structure

(biomass allocation among trophic levels) and biomass standing

stock (gC L21). We assembled food webs in outdoor microcosms

in a factorial experiment with four temperature levels (ambient,

+2, +4, and +6uC) and two resource levels (nutrient additions and

controls) (Table 1). Treatment levels mimic local estuary

conditions during springtime warming and dry versus storm

events causing riverine inputs of elevated nutrient concentrations

(Figure S1). We measured effects of temperature and nutrient

treatments on standing stocks of primary and secondary producers

and on rates of primary productivity. Initial microcosm conditions

included known amounts of zooplankton, phytoplankton, and

bacteria (Figure 2) collected from the Bogue Sound Estuary at the

University of North Carolina’s Institute of Marine Sciences (IMS)

in Morehead City, North Carolina.

Results

We found that small increases in temperature (Table 1) shifted

food web structure toward greater heterotroph biomass relative to

autotroph biomass (H/A) (Figure 2A). This shift is consistent with

predictions based on differential temperature scaling of respira-

tion- and photosynthesis-limited metabolism (Figure 1) [9,13,14].

Differential temperature scaling implies that organismal processes

such as resource use, growth, and reproduction rates scale

differently with temperature for heterotrophs and autotrophs

[9,14]. Consequently, increased grazing pressure with temperature

dramatically reduced standing phytoplankton biomass in spite of

increased per capita primary productivity (as approximated by the

maximum photosynthesis per unit chlorophyll biomass, PM
B,

Figure 3, Table S1). Stronger consumer effects and greater

consumer biomass were driven by higher density, and not

increased individual size or a shift in the relative abundance of

species (Figure S2). This pattern is consistent with the hypothesis

that temperature affected change on a metabolic, individual level

rather than via competitive exclusion or other species interactions.

Shifts in food web structure with warming were accompanied by

a decrease in overall biomass (Figure 2E, Table 2). The decline in

total biomass is consistent with stronger consumer control of food

web structure with warming [14,15], reflecting a direct effect of

temperature on consumers and a disproportionate increase in

grazing relative to primary production. Conversion of phyto-

plankton into consumer biomass is inefficient (,10% [16]), so as

consumers represent a greater proportion of the food web biomass,

total biomass must decline. If instead the predominant influence of

temperature on consumer productivity had been mediated

indirectly by increased primary productivity, total food web

biomass would have increased (Figure 2B-i). Although food web

structures with reduced relative primary producer biomass are

thought to be unstable, Carpenter et al. (2001) [15] showed that

Figure 1. Effects of temperature on metabolism and food web structure. (A) Temperature (1/kT for T in Kelvin) dependence of
photosynthesis- (PS, slope = 20.32 eV) and respiration- (R, slope = 20.65 eV) based mass-normalized resting metabolic rate (mmol O2/d pg Cah)
(Adapted from Allen et al., 2005 [10], Lopez-Urrutia et al., 2006 [9]). (B) Four possible effects of warming on food web structure and biomass depend
on resource availability and the importance of consumer-controlled (CC) or resource-controlled (RC) food web dynamics. Relative size of boxes and
ovals indicate standing biomass stocks for the simplest of food webs comprising herbivores (Herb.) and primary producers (P. P.).
doi:10.1371/journal.pbio.1000178.g001

Author Summary

Humans rely on marine ecosystems for economic and
nutritional sustenance—including about 16% of animal
protein consumed by humans—making it especially
important for natural scientists, economists, conservation-
ists and long-term policy planners to understand how
climate change is likely to affect oceanic food webs. Yet
the general effects of warming on food web productivity
are completely unknown. The productivity of consumers
(such as zooplankton), in food webs is determined in large
part by their metabolic rates and the availability and
productivity of their limiting metabolic resources. A
general theory relating food web dynamics to temperature
suggests that fundamental differences between consum-
ers and primary producers (such as phytoplankton) may
lead to predictable shifts in their relative abundance and
productivity with warming. We experimentally tested the
effects of warming on food web structure and productivity
under two resource supply scenarios. Our results show
that warming alone can strengthen the role of consumers
in the food web, increasing consumer biomass relative to
producer biomass, and reducing the total biomass of the
food web despite increases in primary productivity. In
contrast, when resources were less available, food web
production was constrained at all temperatures. These
results demonstrate that small changes in water temper-
ature could drive dramatic shifts in marine food web
structure and productivity, and potentially provide a
general, species-independent mechanism of ecological
response to climate change.

Warming and Resources Control Food Web Structure
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such a top-heavy food web structure can be sustained over time in

natural pelagic lake food webs (i.e., at least 5 years).

There was a strong interaction between resource availability

and temperature effects on food web structure and total biomass.

Nutrient addition allowed food web structure (H/A) to increase

with warming and led to greater total food web biomass that

declined with warming (Figure 2). In contrast, in the nutrient

control treatments, resource availability constrained primary

productivity at all temperatures (Figure 3), limited total standing

biomass, and reversed the temperature-induced increase in H/A

at the highest temperature. Low H/A at the highest temperature

probably reflects exhaustion of resources at the highest produc-

tivity rates. In sum, resource availability determined whether food

web structure was more strongly influenced by resources or by

consumers (Figure 1B). If this experimental system is representa-

tive of effects of environmental warming, the interaction between

nutrient supply and temperature suggests that in nutrient-poor

regions, food webs may be more resilient to warming because

consumer production is limited by resource availability, while in

nutrient-rich regions small amounts of warming may have

dramatic effects on trophic structure, primary productivity, and

standing biomass.

Food web experiments in microcosms are a necessary but

imperfect approximation of natural conditions. Microcosm

experiments allow manipulation of environmental factors that

would be impossible in the field while allowing natural feeding

interactions, behaviors, and population growth processes to occur.

These advantages undoubtedly enhance our understanding of

fine-scale biological dynamics in pelagic ecosystems. Nonetheless,

small microcosms impose several limitations on the broad

interpretation of their results. For example, evaporation at warmer

temperatures increased salinity in our microcosms (Table 1).

Reduced concentrations of dissolved oxygen and carbon dioxide

are also associated with warmer temperatures and likely varied

naturally in our microcosms. Though these factors can influence

productivity, their effects are negative and small over the

experimental temperature range relative to the strong positive

effects of temperature [17]. In addition, it is possible that the

importance of consumer control was amplified in our experimental

microcosms. For example, small experimental systems with

relatively homogenous environments can facilitate foraging and

reduce refuges for resources. Nonetheless, top-down determination

of food web structure and dynamics has been documented in

large-scale aquatic ecosystems [15,18] and may become more

important in a warming environment.

Discussion

Temperature is known to influence food web structure

[13,19,20], and such findings have generally been attributed to

differential effects of resource limitation across trophic levels, or

the specific effects of temperature on consumers or producers

[13,19]. Our experiments demonstrate that temperature alone can

shift food web structure and change total standing biomass.

Furthermore, biogeographic trends towards net heterotrophy in

warmer climates in open ocean pelagic food webs [9,21] and

patterns observed in spring bloom dynamics, rocky intertidal

systems, grasslands, and forests [20,22–25] are consistent with

differential metabolic scaling across trophic levels, though this

mechanism has been invoked and tested in just one of these cases

Table 1. Experimental temperature and nutrient treatments.

Temperature Treatment

Ambient +2uC +4uC +6uC

Temperature uC * 20.4 (0.13) 22.7 (0.12) 24.0 (0.37) 26.4 (0.52)

Salinity * 34.7 (0.82) 36.4 (1.51) 36.4 (1.65) 38.2 (1.81)

Nutrient Additions (initial mM)

[NOx] (0.16) 0.03 (0.03) 0.00 (0.00) 0.10 (0.08) 0.07 (0.03)

[NH4] (0.55) 0.84 (0.20) 1.23 (0.38) 0.48 (0.07) 0.82 (0.11)

[PO3] { (0.05) 7.23 (0.38) 6.49 (0.50) 7.05 (0.68) 8.73 (0.50)

[TN] { (9.86) 30.98 (3.25) 28.04 (3.31) 31.16 (1.65) 32.86 (3.27)

Nutrient Controls

[NOx] 0.03 (0.02) 0.03 (0.02) 0.03 (0.03) 0.05 (0.05)

[NH4] 0.97 (0.18) 0.65 (0.21) 0.59 (0.11) 1.07 (0.56)

[PO3] { 0.02 (0.01) 0.04 (0.01) 0.09 (0.04) 0.03 (0.01)

[TN] { 16.22 (3.32) 24.30 (5.03) 17.59 (1.28) 14.61 (3.50)

Mean (6s.e.) temperature based on hourly datalogger readings throughout the
experiment. Temperatures fluctuated 63uC daily similar to field conditions.
Mean (6s.e.) final salinity and nutrient concentration values are given.
Treatments received no nutrients (controls) or 20 mM N and 5 mM P on Days 0,
2, and 4 (additions). Significant (p,0.01, one- or two-way ANOVA) main effects
of temperature* and nutrient{ treatments are indicated.
doi:10.1371/journal.pbio.1000178.t001

Figure 2. Effects of temperature and nutrient treatments on
food web structure and biomass. Effect of temperature (uC) on
mean (6s.e.) (A) ratio of heterotroph to autotroph biomass and the
carbon biomass of (B) phytoplankton, (C) microbes, (D) zooplankton,
and (E) the entire food web in nutrient addition (N) and control (#)
treatments. Initial conditions (mean6s.e. indicated by horizontal lines)
mimicked contemporary conditions in Bogue Sound. Significance of
two-way ANOVA test: *** p,0.001, ** p,0.01, * p,0.05. Full statistical
results in Table 2.
doi:10.1371/journal.pbio.1000178.g002

Warming and Resources Control Food Web Structure
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[9]. By explicitly testing the hypothesis based on metabolic theory

in the context of food web ecology, we have for the first time

experimentally validated the prediction that universal temperature

constraints on individual metabolism can lead to general responses

at the community level [11,26].

The interaction between effects of temperature and nutrient

availability observed in these experiments deepens our understand-

ing of food web responses to changing climate conditions. In pelagic

marine ecosystems, projected increases in stratification imply that

negative correlations between nutrient availability and temperature

will intensify in many regions [5,27]. This pattern occurs on very

broad geographic scales (i.e., cold temperate or polar systems

relative to tropical systems), on smaller scales within oceans and seas

(i.e., the North Sea [19]), and over time within a single region [4].

According to theory supported by our experimental results, small

increases in sea surface temperature should cause small declines or

no change at all in primary productivity and standing stocks in

nutrient-poor systems such as stratified areas with a shallow thermo-

or pycnocline. Under such conditions, nutrient limitation would

constrain consumer productivity and biomass stocks (Figure 1B-iii),

and could even lead to reduced consumer biomass with warming

due to increased respiratory costs that exceed available primary

production. In contrast, when nutrients are plentiful, as in upwelling

or well-mixed systems, warming should increase productivity

leading to increased biomass production at higher trophic levels,

shifted food web structure, and stronger consumer control of

phytoplankton standing stock (Figure 1B-ii).

The importance of temperature scaling of food web structure

for fisheries productivity and food webs in aquatic ecosystems

depends on the contemporary food web structure. In nature, most

food webs include consumers at trophic levels higher than the

zooplankton used in our microcosm experiments. In more

complex food webs, temperature-driven intensification of con-

sumer control could strengthen a trophic cascade, causing

increased phytoplankton biomass as a result of indirect effects of

increased consumption by carnivores. Alternatively, if consumer

biomass has been severely reduced due to overfishing, direct effects

of differential temperature scaling across trophic levels may be

difficult to detect and indirect effects of increased primary

productivity may be most apparent (Figure 1B-i) [3].

Ocean warming or cooling influences marine ecosystems in a

variety of ways. For example, together with associated changes in

physical properties such as vertical stratification and ice cover,

warming has shifted species composition and altered the timing of

seasonal spawning and spring bloom events [5,28,29]. The

ramifications of these changes can be severe for some species

and mild for others, causing mismatch between interacting species

[6,20,28]. Temperature scaling of food web properties, however, is

a general response to temperature change that should occur

regardless of species composition [9,10]. This mechanistic

response can be incorporated into predictions of ecological

variation, thus providing one of the few general models for

ecosystem change with geography or climate.

The conceptual framework outlined here reinforces predictions

that effects of climate change on ecosystem processes will vary

among regions [7,30]. Future warming will likely increase

secondary productivity and fish harvests in nutrient-rich regions,

but may cause little change in more stratified, oligotrophic systems.

These are not paradoxical responses, and the general effects of

temperature in different nutrient contexts explain why different

responses to warming can occur within the same ecosystem.

Implications of temperature effects on food webs for the ocean’s

role in carbon cycling are unclear, due in part to the mosaic of

nutrient-rich and nutrient-poor regions of the world’s oceans, and

to temperature-driven shifts in the threshold dividing net

heterotrophy from net autotrophic (carbon sinks from carbon

sources) [9]. Nonetheless, small degrees of warming may have

predictable broad scale consequences for the productivity and

structure of aquatic ecosystems.

Methods

Mesocosm System and Experimental Design
Food webs were maintained in 4-L translucent plastic

microcosms (n = 5) in outdoor water tables at IMS from April 23

to May 1, 2008. Pilot experiments indicated that 8 days were

Figure 3. Effects of temperature on primary productivity. (A) Mean (695% CI) maximum photosynthesis per unit chlorophyll biomass (PM
B) in

nutrient addition (N) and no-addition control (#) treatments and (B) P-I curves for nutrient addition (black lines) and no-addition control (gray lines)
for ambient, +2, and +6uC treatments (solid, dashed, and dotted lines, respectively).
doi:10.1371/journal.pbio.1000178.g003

Warming and Resources Control Food Web Structure
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sufficient to allow zooplankton population growth without

exhausting water quality. We maintained temperature treatments

in a blocked design with temperature blocked by water table

(Table 1). Temperature treatments were significantly different

(one-way ANOVA with temperature as a continuous variable:

df = 1, F = 567.72, p,0.001), and water table did not alter the

treatment effects (comparison of nested linear models using

likelihood ratio tests indicated no improvement by including a

water table term: p.0.952). Temperatures were monitored

regularly using a hand thermometer and continuously using

ibutton Thermochron dataloggers (Dallas semiconductor, Dallas,

Texas, USA). Nutrient addition and control replicates were

randomly arranged in water tables. Plexiglass and one layer of

window screen were placed several inches above microcosms to

block UV radiation, minimize evaporation, and reduce light levels

to those similar to 0.5–1.0 m depth (approximately 900 mM

Table 2. Statistical results of two-way ANOVA analyses on the effects of temperature and nutrient levels on biomass standing
stocks in an experimental food web.

Response Source df MS F p

Phytoplankton C biomass Temperature 1 2.684 10.504 ,0.01

Nutrients 1 32.796 128.406 ,0.001

Temperature*Nutrients 1 2.293 8.976 ,0.01

Error 36 0.255

Microbe C biomass Temperature 1 4.79861027 23.621 ,0.001

Nutrients 1 8.40461026 41.376 ,0.001

Temperature*Nutrients 1 2.17561027 10.710 ,0.01

Error 36 2.03161028

Zooplankton C biomass Temperature 1 6.926 11.056 0.002

Nutrients 1 6.798 10.851 0.002

Temperature*Nutrients 1 4.504 7.189 0.011

Error 36 0.627

Heterotroph/Autotroph C biomass Temperature 1 18.402 21.285 ,0.001

Nutrients 1 9.908 11.460 0.002

Temperature*Nutrients 1 13.416 15.517 ,0.001

Error 36 0.865

Total C biomass (mg/L) Temperature 1 0.938 19.568 ,0.001

Nutrients 1 8.380 174.861 ,0.001

Temperature*Nutrients 1 0.950 19.825 ,0.001

Error 36 0.048

Zooplankton average length (mm) Temperature 1 3 ,0.001 0.984

Nutrients 1 93,345 14.448 ,0.001

Temperature*Nutrients 1 992 0.154 0.697

Error 36 6,461

Calanoid density Temperature 1 9,193.7 18.434 ,0.001

Nutrients 1 13,468.9 27.006 ,0.001

Temperature*Nutrients 1 3,960.5 7.941 0.008

Error 36 498.7

Cyclopoid density Temperature 1 105.13 1.375 0.249

Nutrients 1 1,155.63 15.120 ,0.001

Temperature*Nutrients 1 235.44 3.080 0.088

Error 36 76.43

Harpacticoid density Temperature 1 12.50 2.059 0.160

Nutrients 1 16.90 2.783 0.104

Temperature*Nutrients 1 2.00 0.329 0.570

Error 36 6.07

Nauplii density Temperature 1 58,277 12.518 0.001

Nutrients 1 121,000 25.992 ,0.001

Temperature*Nutrients 1 56,919 12.227 0.001

Error 36 4,655

Significant (p,0.05) results indicated in bold.
doi:10.1371/journal.pbio.1000178.t002
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photons/m2/s midday on a sunny day), while still allowing

unhindered gaseous exchange with the atmosphere. Each

microcosm received air through an air stone to maintain oxygen

levels and water mixing.

Sampling Food Web Structure, Biomass, and Primary
Productivity

Phytoplankton biomass was estimated by quantifying chloro-

phyll a concentrations in 50 mL aliquots of each replicate.

Nutrient (NH4, PO4, NOX and total nitrogen (TN)) concentrations

were quantified using the filtrate from the same water samples

used to estimate phytoplankton biomass. Zooplankton were sorted

from water remaining in the microcosm after other sampling

(2,768 mL) using a 63 mm mesh and preserved in 4.5% sucrose

Formalin. In the laboratory, zooplankton were counted and

identified to lowest taxonomic level possible at 406magnification.

Carbon biomass was estimated by converting from chl a, ash free

dry weight, and visual counts for phytoplankton, zooplankton, and

microbes, respectively (Text S1).

Final maximum primary productivity was estimated using

photosynthesis versus irradiance (P-I) relationships for ambient,

+2, and +6uC. Maximum photosynthesis per unit chlorophyll

biomass (PM
B) and the initial slope of the P-I curve (695%

confidence intervals) were calculated based on estimation of

radioactive carbon uptake at each treatment level. Phytoplankton

samples were collected from microcosms and spiked with 14C-

bicarbonate (Amersham) to a final concentration of 0.8 mCi mL21

and incubated for 45 minutes at varied irradiances (Text S1).

Effects of temperature and nutrient levels on response variables

were analyzed using a two-way ANOVA. Biomass data were log-

transformed prior to analysis to meet the assumptions of ANOVA.

All statistical analyses were performed in R (v. 2.7.0). P-I curve

fitting was performed in SAS.

Supporting Information

Figure S1 Natural variation in nutrient concentrations
(mM) and temperature (uC) in Bogue Sound, North
Carolina.

Found at: doi:10.1371/journal.pbio.1000178.s001 (3.60 MB RTF)

Figure S2 Effect of temperature (uC) on zooplankton
size, density, and taxonomic composition.

Found at: doi:10.1371/journal.pbio.1000178.s002 (0.34 MB PDF)

Table S1 Parameters for photosynthesis-irradiance (P-
I) curves.

Found at: doi:10.1371/journal.pbio.1000178.s003 (0.06 MB RTF)

Text S1 Additional methodological detail.

Found at: doi:10.1371/journal.pbio.1000178.s004 (0.05 MB RTF)
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