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Mathematical modelling and time series analysis techni-
ques are important tools for extracting information 
from complex geotime series. These techniques also 
facilitate a fair degree of prediction, which is one of 
the prime goals of science. The data analysis strategy 
for such a purpose mainly involves spectral analysis 
and pattern classification. The aim of pattern classifi-
cation and frequency analysis is to assign observations 
or patterns into semantic categories. Traditional sta-
tistical methods generally applied during the past years 
fail to recognize patterns from high dimensional geo-
records. Principal component analysis (PCA) is a pow-
erful tool in identifying patterns in such records and 
provides useful means for reducing the number of  
dimensions without loss of much information. Here we 
have carried out spectral analysis and PCA of a climate 
record for approximately 28,000 yrs spanning from 
1.15 to 29.78 kyr, off central Japan in the northwest 
Pacific. Our analysis reveals a dominant oscillation 
corresponding to the well known ‘Heinrich Cycle’. 
The physical significance of the results has been dis-
cussed and the observed cyclic pattern corresponding 
to the global ‘Heinrich Cycle’ originating from the 
North Atlantic and Greenland ice rafting fluctuations 
has been linked to the Pacific phenomenon and Asian 
monsoon system. 
 
Keywords: Heinrich Cycle, Last Glacial Maximum,  
palaeoclimate, principal component analysis, spectral 
analysis, time series. 
 
THE climate system dynamics is a complex and coupled 
phenomenon because it is the result of interactions of 
various components of the land–ocean–atmosphere and 
cryosphere. Extracting physical information and making 
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valid interpretation1 using such complex palaeo-climate 
time series are therefore somewhat difficult, unless  
appropriate treatment of the data is made. Statistical models 
have been used for many years in the hope to predict geo-
phenomena. As such, geophysical data acquired or meas-
ured contain certain unwanted information, which has to 
be either filtered or simply iterated so as to enable the  
observer to obtain the required information. The main  
application of the time series is to identify the hidden 
trends and periodicities from such complex time series 

and make a possible prediction. The mathematical meth-
ods that have been commonly used to identify peri-
odicities are based on the assumption that the underlying 
time series is stationary and provides a density spectrum 
of the data. Hence, spectral analysis helps in identifying 
periodicities in counted or measured data, when the time 
series are presumably stationary and also long enough to 
contain at least four cycles. The highest peak in such a 
spectrum gives its frequency and power value, together 
with probability that the spectral peak could occur from 
the random/stochastic/cyclic processes. Appropriate sta-
tistical significance test of dominant spectral mode  
ensures the physical validity of the interpretation. 
 During the recent years, principal component analysis 
(PCA) has been widely used for identifying patterns from 
the complex geo-time series data. The utility of PCA lies 
in the fact that it can be used to infer variance of various 
components from the complex time series. This is par-
ticularly useful in applications where the complexity of 
the climate data makes it difficult to understand the vari-
ance of different harmonics. Here we have analysed a 
climate record for approximately the last ~28,000 yrs 
spanning from 1.15 to 29.78 kyr, which corresponds to 
the important geologic period of the Last Glacial Maximum 
(LGM). Our spectral and PCA analyses reveal a long-
term harmonic in the data and provide important climate 
tele-connections between the oceanic and Indian mon-
soon system. 
 The LGM dates back to approximately 21,000 yrs and 
is the glacial period that witnessed large changes in the 
greenhouse gases, sea level and ice sheets. In the present 
study, we used the published down-core data of sea sur-
face temperature (SST) decoded from the planktonic fora-
minifera Mg/Ca thermometry record off central Japan 
since the LGM2. The Mg/Ca ratio of this planktonic 
forminiferal calcite has been recently established as one 
of the significant palaeo-temperature proxy, since it can 
be used as a sample for oxygen isotope analysis also. The 
data have been taken from the Mg/Ca ratio and δ18O val-
ues of these planktonic forminifera from a sediment core 
(MD01-2320) from the Kuroshio front, i.e. the boundary 
between the Kuroshio current and the convergence zone 
located south of 33°N off Central Japan in the northwest 
Pacific Ocean have been used to determine the SST data. 
Application of the Mg/Ca temperature calibration down-
core measurements includes magnitude and timing of the 

SST changes for the past ~30,000 years spanning from 
1.15 to 29.78 kyr, particularly northwest Pacific. SST 
data record and their spectrum are presented in Figure 1. 
 Before PCA, we applied Fourier spectral analysis to 
the data to find statistically significant harmonic compo-
nents, if any. The spectral results also are displayed in 
Figure 1. In Figure 1, the dotted line shows 95% statisti-
cal significance level and it is evident that there is only 
one strong peak at around 4500 ± 500 kyr, which is statis-
tically significant at 95% confidence level. This might 
correspond to the well-known Heinrich Cycle. The spec-
tral result shows peak frequency value: 0.9867, peak 
power: 25.22, P (random): 1.493 E–09. 0.01 level:  
9.503, 0.05 levels: 7.868. There are other oscillations 
also, but these are below the confidence level and hence 
may be treated as statistically and physically irrelevant. It 
is interesting to note here that similar or almost identical 
periodicities have also been reported in the Asian mon-
soon system record3. This might suggest a possible tele-
connection between the Heinrich Cycle and the East 
Asian winter monsoon system. By definition, Heinrich 
events are restricted to the North Atlantic, but there is 
evidence for 6.00 to 1.5 kyr Heinrich Cycle in the global 
climate records. This correlates with major changes in the 
global climate system from North Atlantic and Antarc-
tica. The Greenland temperature also oscillates and coin- 
 
 

 
 

Figure 1. a, Mg/Ca-based sea surface temperature (SST) data (after 
Sagawa et al.1). b, Spectral analysis of the SST data. Dotted lines show 
the 99 and 95% confidence level. 
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cides with the Heinrich Cycles, with major changes in the 
global climate dynamics3–5. 
 In the PCA we attempt to explain the total variability 
of correlated variables through the use of orthogonal 
principal components. The components themselves are 
merely weighted linear combinations of the original vari-
ables. 
 The first principal component can be expressed as fol-
lows: 
 
 Y1 = a11X1 + a21X2 + ⋅ ⋅ ⋅ + ap1Xp, 
 
or in matrix form 
 
 Y1 = a′x. 
 
The aj1 are scaled such that aTa1 = 1. Y1 accounts for the 
maximum variability of the variables of any linear com-
bination. The variance of Y1 is λ1. 
 Next, principal component Y2 is formed such that its 
variance, λ2, is the maximum amount of the remaining 
variance and that it is orthogonal to the first principal 
component. That is, a′1a2 = 0. 
 One continues to extract components until some stop-
ping criteria are encountered or the until required number 
of components are formed. It is possible to compute prin-
cipal components from either the covariance matrix or 
correlation matrix of the same number of variables. If the 
variables are scaled in a similar manner, then many  
researchers prefer to use the covariance matrix. When the 
variables are scaled different from one another, then  
using the correlation matrix is preferred. Common stop-
ping criteria when using the correlation matrix are to stop 
when the variance of a component is less than one. 
 Generally, the weights used to create the principal 
components are the eigenvectors of the characteristic 
equation: 
 
 (S – λiI)a = 0 or (R – λiI)a = 0. 
 
where S is the covariance matrix and R is the correlation 
matrix. λi are the eigenvalues, the variances of the com-
ponents. 
 We applied PCA to identify a pattern in the data under 
observation and expressing the data in such a way in order 
to highlight their similarities and differences. PCA is also 
known as the empirical orthogonal function (EOF) analy-
sis, or an orthogonal transformation which transforms the 
data in question to a new coordinate system such that the 
greatest variance in the projection of the data comes to lie 
on the first coordinate called the first principal compo-
nent, the second greatest variance on the second coordi-
nate and so on6. Theoretically speaking, PCA is the 
optimum transform for a given data in least square terms. 
In PCA we subtract the mean to obtain the average across 
each dimension or projection; thereby covariance matrix 

would be calculated drawing eigenvectors and eigenvalues of 
the covariance matrix. Thereafter, we choose components 
and form a feature of the vector deriving a new dataset. 
Thus, basically we transform our data so that they are ex-
pressed in terms of the patterns between them, where the 
patterns are lines that mostly closely describe the rela-
tionships between the data. This is useful because we 
have now classified our datapoints as a combination of 
the contributions from each of those lines of the dataset. 
Thus PCA is a technique used to reduce multidimensional 
datasets to lower dimension for analysis in exploratory 
data analysis and for making predictive models involving 
calculation of the eigenvalue decomposition or singular 
value decomposition of a dataset, usually after mean cen-
tring the data for each attribute. The results of the PCA 
are usually discussed in terms of component scores and 
loadings7,8. 
 The results of the PCA are displayed in Figure 2. We 
have considered three principal components for the SST 
record, viz. PC1, PC2, PC3. Figure 2 shows the patterns  
of decomposition. The spectral periodicities and principal 
components indicate that the first component consists of 
almost 93% of total variance which signifies the low fre-
quency period suggesting that only one cycle of the  
period ~4500 ± 500 kyr is statistically significant. Both 
analyses provide a robust time constant in global climate 
system records, which seems to be of fundamental impor-
tance. Spectral analyses of the sea surface data thus pro- 
 
 
 

 
 

Figure 2. Principal component analysis of SST data showing percent-
age variance of the three principal components PC1 = 92.461, 
PC2 = 4.536 and PC3 = 3.003 respectively. 
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vide good correlation with the PCA coordinates. We used 
Caterpillar Software developed by the Caterpillar Group, 
1997, for the PCA. 
 It has been observed that the total variance of these 
principal components is 100%, based on which the time 
series was reconstructed along with their residuals (Fig-
ure 3). The results of the PCA indicate the dominant tempo-
ral and spatial variability patterns such as Heinrich Cycle 
with relevant physical processes. The first principal com-
ponent (92.461%) explains the majority of variance, the 
second principal component (4.536%), the third principal 
component (3.003%) and so on. 
 The LGM approximately 21,000 yrs ago, is a glacial 
period and forcing phenomenon with large changes in the 
greenhouse gases, sea level and ice sheets. The late gla-
cial warming prior to Heinrich Event-I has influenced the 
ice rafting and large ice sheets were displaced in the 
northern hemisphere9. The freshwater flux originating 
from the North Atlantic affected the density of sea sur-
face water, which in turn, controlled the large scale con-
vection occurring in the northernmost part of the Atlantic 
Ocean. The resulting ‘overturning’ ventilates the deep 
layers of the global oceanic system10,11. This overturning 
is widely known as the North Atlantic Deep Water 
(NADW) flux, which belongs to wider global circulation 
system known as thermo-haline circulation and repre-
sented as a conveyer belt that links the world ocean basins. 
These cold ocean waves influenced the proximal terres-
trial climates, affecting remote regions with respect to 
monsoon and seasons at almost regular intervals of 4000–
5000 yrs and are widely known as the Heinrich Cycle. 
The spectral analysis and PCA of SST data from central 
Japan in the northwest Pacific, reveals statistically signifi-
cant quasi-periodicity of 4000–5000 yrs identical to the 
 
 
 

 
 

Figure 3. a, Original and reconstructed SST data. b, Residuals of SST 
data.  

global Heinrich cycle. In view of the common cyclic 
mode and physical link as discussed above, our results 
might suggest that temporal and spatial variability of  
Japan SST could have been tele-connected to the larger 
system of coupled land–ocean–atmosphere cryosphere. 
The results will have significant implication for under-
standing the link between the global oceanic thermo-
haline circulation pattern and the Asian monsoon sys-
tem12. 
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