The Arctic marine environment is undergoing a transition from thick multi-year to first-year sea-ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade−1 earlier from 1979 to 2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013.

Significant salinity anomalies have been observed in the Arctic Ocean surface layer during the last decade. Our study is based on an extensive gridded dataset of winter salinity in the upper 50 m layer of the Arctic Ocean for the periods 1950–1993 and 2007–2012, obtained from ~20 000 profiles. We investigate the interannual variability of the salinity fields, identify predominant patterns of anomalous behavior and leading modes of variability, and develop a statistical model for the prediction of surface-layer salinity.

Wintertime windstorms associated with low-pressure systems from the North Atlantic Ocean are the costliest natural hazard for Europe. These storms are associated with large pressure gradients and high background winds, but the most destructive gusts are often confined to relatively small areas within the low-pressure systems.

A bibliometric approach is used in this study for the assessment of greenhouse gas (GHG) research trends on a global scale. The relevant literature published from 2000 to 2014 in journals of all subject categories of the Science Citation Index Expanded from the Web of Science Core Collection databases has been used. The strings ‘greenhouse gas*’ or ‘green house gas*’ are used for retrieving data.

Deep water convection (DC) in winter is one of the major processes driving open-ocean primary productivity in the Northwestern Mediterranean Sea. DC is highly variable in time, depending on the specific conditions (stratification, circulation and ocean-atmosphere interactions) of each specific winter. This variability also drives the interannual oscillations of open-ocean primary productivity in this important region for many commercially-important fish species.

Pages