Soil moisture supply and atmospheric demand for water independently limit—and profoundly affect—vegetation productivity and water use during periods of hydrologic stress. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models.

There is an ongoing debate on whether the observed decadal variations in surface solar radiation, known as "dimming and brightening", are a global or just local phenomenon. We investigated this issue using a comprehensive set of long-term sunshine duration records from China, which experienced a rapid growth in urbanization during past decades. 172 pairs of urban and nearby rural stations were analyzed over the period 1960–1989 ("dimming phase") and 1990–2013 ("brightening phase").

The year 1980 has often been used as a benchmark for the return of Antarctic ozone to conditions assumed to be unaffected by emissions of ozone depleting substances (ODSs), implying that anthropogenic ozone depletion in Antarctica started around 1980. Here, the extent of anthropogenically-driven Antarctic ozone depletion prior to 1980 is examined using output from transient Chemistry-Climate Model (CCM) simulations from 1960 to 2000 with prescribed changes of ozone depleting substance concentrations in conjunction with observations.