A well-managed chemical nitrogen (N) fertilization practice combined with treated swine slurry (TSS) is necessary to improve sustainability and N use efficiency in rice farming. However, little is known about the fate of N derived from chemical N fertilizer with and without TSS in paddy soil-plant systems.

Original Source

विदेशी पौधे बिगाड़ रहे है पर्यावरण और सेहतविदेशी पौधे बिगाड़ रहे है पर्यावरण और सेहत

Plants with rising atmospheric carbon dioxide (CO2) level in the environment may change their nutrient demands to sustain growth. The mechanisms concerning iron dynamics in plants under the interactive effect of salinity and elevated CO2 are poorly understood. This study examines the effects of long-term as well as short-term growth at elevated CO2 and salt on iron deficiency-associated molecular responses of Porteresia coarctata through analysing the transcript expression of iron deficiency-responsive genes in the leaf tissue.

The trace element selenium is essential for human health and is required in a narrow dietary concentration range. Insufficient selenium intake has been estimated to affect up to 1 billion people worldwide. Dietary selenium availability is controlled by soil–plant interactions, but the mechanisms governing its broad-scale soil distributions are largely unknown. Using data-mining techniques, we modeled recent (1980–1999) distributions and identified climate–soil interactions as main controlling factors.

Peatlands are carbon-rich ecosystems that cover just three per cent of Earth’s land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world’s most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin.

Anthropogenic activity is affecting the global climate through the release of greenhouse gases (GHGs) e.g. CO2 and CH4. About a third of anthropogenic GHGs are produced from agriculture, including livestock farming and horticulture. A large proportion of the UK's horticultural farming takes place on drained lowland peatlands, which are a source of significant amounts of CO2 into the atmosphere.

Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear.

In this study we evaluated CO2 emissions during composting of green wastes with clay and/or biochar in the presence and absence of worms (species of the genus Eisenia), as well as the effect of those amendments on carbon mineralization after application to soil.

Original Source

Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems . However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients.

Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account.