Despite the urgent need for new, effective antibiotics, few antibiotics of value have entered the market during the past decades. Therefore, incentives have been developed to stimulate antibiotic R&D.

Microbiota from humans of all cultures are needed to ensure the health of future generations.

Original Source

Empiric probiotics are commonly consumed by healthy individuals as means of life quality improvement and disease prevention. However, evidence of probiotic gut mucosal colonization efficacy remains sparse and controversial. We metagenomically characterized the murine and human mucosal-associated gastrointestinal microbiome and found it to only partially correlate with stool microbiome. A sequential invasive multi-omics measurement at baseline and during consumption of an 11-strain probiotic combination or placebo demonstrated that probiotics remain viable upon gastrointestinal passage.

Understanding of the factors driving global antimicrobial resistance is limited. We analysed antimicrobial resistance and antibiotic consumption worldwide versus many potential contributing factors.

Original Source

The human gut microbiome has been associated with many health factors but variability between studies limits exploration of effects between them. Gut microbiota profiles are available for >2700 members of the deeply phenotyped TwinsUK cohort, providing a uniform platform for such comparisons. Here, we present gut microbiota association analyses for 38 common diseases and 51 medications within the cohort.

The existence of a chemosynthetic subseafloor biosphere was immediately recognized when deep-sea hot springs were discovered in 1977. However, quantifying how much new carbon is fixed in this environment has remained elusive. In this study, we incubated natural subseafloor communities under in situ pressure/temperature and measured their chemosynthetic growth efficiency and metabolic rates. Combining these data with fluid flux and in situ chemical measurements, we derived empirical constraints on chemosynthetic activity in the natural environment.

Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 2050. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance.

The objective of this study was to estimate and compare the occurrence of AMR in wild red foxes in relation to human population densities. Samples from wild red foxes (n = 528) included in the Norwegian monitoring programme on antimicrobial resistance in bacteria from food, feed and animals were included. All samples were divided into three different groups based on population density in the municipality where the foxes were hunted.

Original Source

To determine trends, mortality rates, and costs of antimicrobial resistance in invasive bacterial infections in hospitalized children, we analyzed data from Angkor Hospital for Children, Siem Reap, Cambodia, for 2007–2016. A total of 39,050 cultures yielded 1,341 target pathogens. Resistance rates were high; 82% each of Escherichia coli and Klebsiella pneumoniae isolates were multidrug resistant. Hospital-acquired isolates were more often resistant than community-acquired isolates; resistance trends over time were heterogeneous. K.

Microbial communities, associated with almost all metazoans, can be inherited from the environment. Although the honeybee (Apis mellifera L.) gut microbiome is well documented, studies of the gut focus on just a small component of the bee microbiome. Other key areas such as the comb, propolis, honey, and stored pollen (bee bread) are poorly understood. Furthermore, little is known about the relationship between the pollinator microbiome and its environment. Here we present a study of the bee bread microbiome and its relationship with land use.

Pages