Bacterial drug resistance has emerged as a serious global threat mandating the development of novel methodologies that allow facile modulation of antimicrobial action in a controlled fashion. Conjugating antibiotics to nanoparticles helps to meet this goal by increasing the drug’s overall avidity, bioavailability and easier internalisation into mammalian cells, targeting bacteria that otherwise escape antibacterial action by host cell-localisation.

It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens.

Reduced graphene oxide (rGO) is a promising antibacterial material, the efficacy of which can be further enhanced by the addition of silver nanoparticles (nAg). In this study, the mechanisms of antibacterial activity of rGO–nAg nanocomposite against several important human pathogenic multidrug resistant bacteria, namely Gram-positive coccal Staphylococcus aureus and Gram-negative rodshaped Escherichia coli and Proteus mirabilis are investigated.

Original Source

The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3.

Increasing emission rate of carbon dioxide (CO2) and other greenhouse gases is the major driver of global temperature increase. Soil microbial respiration is accelerating the release of CO2 in the environment, but the mechanistic understanding of this process is still at its nascent stage. In this note, we discuss the importance of understanding the microbial responses to climate change and associated respiration process in the Indian Himalayan region.

Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces.

Dried plant products of North west Rajasthan which are cooked as a vegetable known as Trikuta-seeds of Acacia Senegal (L.) Willd., unripe fruits of Capparis deciduas (Forssk.) Edgew. and unripe pods of Prosopis cineraria (L.) Druce were tested against seven clinical isolates including one Gram positive and six Gram negative bacteria using Agar well diffusion method.

Antimicrobial resistance is a serious threat to global public health that requires action across all government sectors and society and is driven by many interconnected factors. Single, isolated interventions have limited impact and coordinated action is required to minimize the emergence and spread of antimicrobial resistance.

Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a ‘one-health’ approach.

Original Source

In the Salish Sea, the endangered Southern Resident Killer Whale (SRKW) is a high trophic indicator of ecosystem health. Three major threats have been identified for this population: reduced prey availability, anthropogenic contaminants, and marine vessel disturbances. These perturbations can culminate in significant morbidity and mortality, usually associated with secondary infections that have a predilection to the respiratory system.