The 2015/2016 El Niño event caused severe changes in precipitation across the tropics. This impacted surface hydrology, such as river run-off and soil moisture availability, thereby triggering reductions in gross primary production (GPP).

The social cost of carbon (SCC) is a commonly employed metric of the expected economic damages from carbon dioxide (CO2) emissions. Although useful in an optimal policy context, a world-level approach obscures the heterogeneous geography of climate damage and vast differences in country-level contributions to the global SCC, as well as climate and socio-economic uncertainties, which are larger at the regional level.

Extreme climate events such as droughts and heat waves exert strong impacts on ecosystems and human well-being. Estimations of the risks of climate extremes typically focus on one variable in isolation. In this study, we present a method to examine the likelihood of concurrent extreme temperature and precipitation modes at the interannual scale, including compound cool/dry and cool/wet events during the cold season as well as compound hot/dry and hot/wet events during the warm season.

In summer (pre-monsoon) of recent years, low water level among the last few decades, has been observed in several lower Indian reaches of the Ganges (or Ganga) river (with estimated river water level depletion rates at the range of −0.5 to −38.1 cm/year between summers of 1999 and 2013 in the studied reaches).

This paper presents future climate and runoff projections for the South Asia region under the RCP8.5 scenario with climate change informed by 42 CMIP5 GCMs. Runoff is projected for 0.5° grids using hydrological models with future climate inputs obtained by empirically scaling the historical climate series.

Original Source

Human-induced environmental and climate change are widely blamed for causing rapid global biodiversity loss, but direct estimation of the proportion of biodiversity lost at local or regional scales are still infrequent. This prevents us from quantifying the main and interactive effects of anthropogenic environmental and climate change on species loss.

The tropical cyclone Dineo made landfall over southern Mozambique on 15 February 2017. It weakened to a remnant low on 17 February, which hit Botswana on the same day and triggered heavy rainfall that resulted in flooding over the country. This study assesses the performance of the National Centers for Environmental Prediction Global Forecast System (GFS) and the European Center for Medium-Range Weather Forecast (ECMWF) models in forecasting the locations and intensity of the tropical cyclone and its remnant low, the associated cloud cover and rainfall over Botswana.

When the social, economic, or ecological conditions under which socio-ecological systems are expected to adapt become untenable, a system may transform into a fundamentally new system. Within agricultural systems, farmers have the option of significantly transforming their practices, or migrating elsewhere in the search for a better lifestyle (and exiting the agricultural socio-ecological system).

Future projections of precipitation at regional scales are vital to inform climate change adaptation activities. Therefore, is it important to quantify projected changes and associated uncertainty, and understand model processes responsible. This paper addresses these challenges for southern Africa and the adjacent Indian Ocean focusing on the local wet season. Precipitation projections for the end of the twenty-first century indicate a pronounced dipole pattern in the CMIP5 multimodel mean.

AHMEDABAD: Climate change will severely affect Rajkot – and by extension central Saurashtra – by the end of the century, predicts a research paper by Gujarat-based officials of the India Meteorolog