Studies published since the Paris Agreement was agreed two years ago are increasingly linking climate change to extreme weather events around the world, a new report shows.

Models show that several aspects of Earth’s top-of-atmosphere energy budget and the magnitude of projected global warming are correlated, enabling us to infer that future warming has been underestimated.

Conflicting sets of hypotheses highlight either the role of ice sheets or atmospheric carbon dioxide (CO2) in causing the increase in duration and severity of ice age cycles ∼1 Mya during the Mid-Pleistocene Transition (MPT). We document early MPT CO2 cycles that were smaller than during recent ice age cycles. Using model simulations, we attribute this to post-MPT increase in glacial-stage dustiness and its effect on Southern Ocean productivity.

Mesoscale convective system (MCS)-organized convective storms with a size of ~100 km have increased in frequency and intensity in the USA over the past 35 years, causing fatalities and economic losses. However, their poor representation in traditional climate models hampers the understanding of their change in the future. Here, a North American-scale convection-permitting model which is able to realistically simulate MSCs is used to investigate their change by the end-of-century under RCP8.5.

The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated. Although various physical processes have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area.

At the High-Level closing of the Global Climate Action events, the first Yearbook of Climate Action was presented to UN Secretary-General António Guterres by Inia Seruiratu, Climate Champion and Fijian Minister for Agriculture, Rural and Maritime Development and National Disaster Management, and Salaheddine Mezouar, Minister for Foreign Affairs

There is a general consensus among Earth scientists that melting of land ice greatly contributes to sea-level rise (SLR) and that future warming will exacerbate the risks posed to human civilization. As land ice is lost to the oceans, both the Earth’s gravitational and rotational potentials are perturbed, resulting in strong spatial patterns in SLR, termed sea-level fingerprints. We lack robust forecasting models for future ice changes, which diminishes our ability to use these fingerprints to accurately predict local sea-level (LSL) changes.

A new U.S. government report shows that climate is changing and that human activities will lead to many more changes. These changes will affect sea levels, drought frequency, severe precipitation, and more. The Climate Science Special Report (CSSR), created by a U.S.

Anomalous peaks of nickel abundance have been reported in Permian-Triassic boundary sections in China, Israel, Eastern Europe, Spitzbergen, and the Austrian Carnic Alps. New solution ICP-MS results of enhanced nickel from P-T boundary sections in Hungary, Japan, and Spiti, India suggest that the nickel anomalies at the end of the Permian were a worldwide phenomenon.

Original Source

Heatwaves with large impacts have increased in the recent past and will continue to increase under future warming. However, the implication for population exposure to severe heatwaves remains unexplored. Here, we characterize maximum potential human exposure (without passive/active reduction measures) to severe heatwaves in India. We show that if the global mean temperature is limited to 2.0ºC above pre-industrial conditions, the frequency of severe heatwaves will rise by 30-times the current climate by the end -21st century.