Recent studies note a significant increase in highpressure blocking over the Greenland region (Greenland Blocking Index, GBI) in summer since the 1990s. Such a general circulation change, indicated by a negative trend in the North Atlantic Oscillation (NAO) index, is generally highlighted as a major driver of recent surface melt record

Continuous seismic observations across the Ross Ice Shelf reveal ubiquitous ambientresonances at frequencies >5 Hz. These firn-trapped surface wave signals arise through wind and snowbedform interactions coupled with very low velocity structures.

This publication presents a collection of examples of how the EU Framework Programme 7 and Horizon 2020 projects have re-aligned their objectives with those of the Paris Agreement and its 1.5°C/2°C goal. Each project has provided information on risks and impacts of global warming above 1.5°C/2°C and the costs and benefits of adaptation.

The social cost of carbon (SCC) is a commonly employed metric of the expected economic damages from carbon dioxide (CO2) emissions. Although useful in an optimal policy context, a world-level approach obscures the heterogeneous geography of climate damage and vast differences in country-level contributions to the global SCC, as well as climate and socio-economic uncertainties, which are larger at the regional level.

One certainty under climate change is that global ocean levels are rising. A new report led by Washington Sea Grant and the University of Washington’s Climate Impacts Group provides the clearest picture yet of what to expect in Washington state.

Aerosol-cloud interactions remain a major uncertainty in climate research. Studies have indicated that model estimates of cloud susceptibility to aerosols frequently exceed satellite estimates, motivating model reformulations to increase agreement. Here we show that conventional ways of using satellite information to estimate susceptibility can serve as only a weak constraint on models because the estimation is sensitive to errors in the retrieval procedures.

The early part of the last deglaciation is characterised by a ~40 ppm atmospheric CO2 rise occurring in two abrupt phases. The underlying mechanisms driving these increases remain a subject of intense debate. Here, we successfully reproduce changes in CO2, δ13C and Δ14C as recorded by paleo-records during Heinrich stadial 1 (HS1). We show that HS1 CO2 increase can be explained by enhanced Southern Ocean upwelling of carbon-rich Pacific deep and intermediate waters, resulting from intensified Southern Ocean convection and Southern Hemisphere (SH) westerlies.

The Bjerknes compensation (BJC) under global warming is studied using a simple box model and a coupled Earth system model. The BJC states the out-of-phase changes in the meridional atmosphere and ocean heat transports. Results suggest that the BJC can occur during the transient period of global warming. During the transient period, the sea ice melting in the high latitudes can cause a significant weakening of the Atlantic meridional overturning circulation (AMOC), resulting in a cooling in the North Atlantic.

Future projections of precipitation at regional scales are vital to inform climate change adaptation activities. Therefore, is it important to quantify projected changes and associated uncertainty, and understand model processes responsible. This paper addresses these challenges for southern Africa and the adjacent Indian Ocean focusing on the local wet season. Precipitation projections for the end of the twenty-first century indicate a pronounced dipole pattern in the CMIP5 multimodel mean.

A growing network of ice cores reveals the past 800,000 years of Antarctic climate and atmospheric composition. The data show tight links among greenhouse gases, aerosols and global climate on many timescales, demonstrate connections between Antarctica and distant locations, and reveal the extraordinary differences between the composition of our present atmosphere and its natural range of variability as revealed in the ice core record.

Pages