The Bjerknes compensation (BJC) under global warming is studied using a simple box model and a coupled Earth system model. The BJC states the out-of-phase changes in the meridional atmosphere and ocean heat transports. Results suggest that the BJC can occur during the transient period of global warming. During the transient period, the sea ice melting in the high latitudes can cause a significant weakening of the Atlantic meridional overturning circulation (AMOC), resulting in a cooling in the North Atlantic.

As the Earth’s atmosphere warms, the atmospheric circulation changes. These changes vary by region and time of year, but there is evidence that anthropogenic warming causes a general weakening of summertime tropical circulation. Because tropical cyclones are carried along within their ambient environmental wind, there is a plausible a priori expectation that the translation speed of tropical cyclones has slowed with warming.

The data reveal 70–100-year-long mega drought events

Rapid intensification (RI) of hurricanes is notoriously difficult to predict and can contribute to severe destruction and loss of life. While past studies examined the frequency of RI occurrence, changes in RI magnitude were not considered. Here we explore changes in RI magnitude over the 30‐year satellite period of 1986–2015. In the central and eastern tropical Atlantic, which includes much of the main development region, the 95th percentile of 24‐hr intensity changes increased at 3.8 knots per decade.

Wintertime windstorms associated with low-pressure systems from the North Atlantic Ocean are the costliest natural hazard for Europe. These storms are associated with large pressure gradients and high background winds, but the most destructive gusts are often confined to relatively small areas within the low-pressure systems.

The Atlantic meridional overturning circulation (AMOC)—a system of ocean currents in the North Atlantic—has a major impact on climate, yet its evolution during the industrial era is poorly known owing to a lack of direct current measurements. Here we provide evidence for a weakening of the AMOC by about 3 ± 1 sverdrups (around 15 per cent) since the mid-twentieth century.

Global warming is likely slowing the main Atlantic Ocean circulation, which has plunged to its weakest level on record, according to a new study.

The tsunami catalogues of the Atlantic include two transatlantic tsunamis in the 18th century the extensively studied 1st November 1755, and 31st March 1761. The latest event struck Portugal, Spain, and Morocco around noontime. Several sources report a tsunami following the earthquake as far as Cornwall (United Kingdom), Cork (Ireland) and Barbados (Caribbean).

Extra-tropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact on landfall due to strong surface winds and coastal storm surges. Climate model integrations have predicted a future increase in the frequency of, and potential damage from, European windstorms and yet these integrations cannot properly represent localised jets, such as sting jets, that may signicantly enhance damage.

The Arctic marine environment is undergoing a transition from thick multi-year to first-year sea-ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade−1 earlier from 1979 to 2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013.

Pages