A subset of Sustainable Development Goals pertains to improving people's living standards at home. These include the provision of access to electricity, clean cooking energy, improved water and sanitation. We examine historical progress in energy access in relation to other living standards. We assess regional patterns in the pace of progress and relative priority accorded to these different services. Countries in sub-Saharan Africa would have to undergo unprecedented rates of improvement in energy access in order to achieve the goal of universal electrification by 2030.

A subset of Sustainable Development Goals pertains to improving people’s living standards at home. These include the provision of access to electricity, clean cooking energy, improved water and sanitation. We examine historical progress in energy access in relation to other living standards. We assess regional patterns in the pace of progress and relative priority accorded to these different services. Countries in sub-Saharan Africa would have to undergo unprecedented rates of improvement in energy access in order to achieve the goal of universal electrification by 2030.

Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models.

Approximately 95% of households in Mozambique burn solid fuels for cooking, contributing to elevated indoor and outdoor fine particulate matter (PM2.5) concentrations and subsequent health and climate impacts. Little is known about the potential health and climate benefits of various approaches for expanding the use of cleaner stoves and fuels in Mozambique.

Revenues derived from carbon have been seen as an important tool for supporting forest conservation over the past decade. At the same time, there is high uncertainty about how much revenue can reasonably be expected from land use emissions reductions initiatives. Despite this uncertainty, REDDþ projects and conservation initiatives that aim to take advantage of available or, more commonly, future funding from carbon markets have proliferated.

Evapotranspiration (ET) is a key process of the climate system because it links water, energy and carbon cycles. In this study we modified a Penman–Monteith based algorithm to estimate ET on the Tibetan Plateau at a 1 km spatial resolution for the period 2000–2010 using meteorological and satellite remote sensing data.

Original Source

Attempts to measure the impacts of climate change on agriculture must invariably rely on models that translate changes in climate to changes in agricultural outcomes. This need for models exists even when assessing the impacts of climate trends that have already occurred, since simultaneous changes in other factors that affect agriculture, such as technologies and government policies, preclude direct observations of impacts. Over several decades, many approaches to developing these models have evolved, with most falling into one of two camps.

Wildfires are anticipated to be more frequent and intense under climate change. As a result, wildfires may emit more air pollutants that can harm health in communities in the future. The health impacts of wildfire smoke under climate change are largely unknown.

Original Source

Smallholder farming is the most prevalent form of agriculture in the world, supports many of the planet’s most vulnerable populations, and coexists with some of its most diverse and threatened landscapes. However, there is little information about the location of small farms, making it difficult both to estimate their numbers and to implement effective agricultural, development, and land use policies.

The frequency of large wildfires in western North America has been increasing in recent decades, yet the geochemical impacts of these events are poorly understood. The multidecadal timescales of both disturbance-regime variability and ecosystem responses make it challenging to study the effects of fire on terrestrial nutrient cycling. Nonetheless, disturbance-mediated changes in nutrient concentrations could ultimately limit forest productivity over centennial to millennial time scales.

Pages