In many terrestrial regions, higher than usual surface temperatures are associated with (or are even induced by) surface moisture deficits. When in the warm season temperatures become anomalously high, their extreme values affect human beings causing heat stress. Besides increased temperature, rising humidity may also have substantial implications for bodily thermal comfort. However, the effects of surface moisture on heat stress, when considering both temperature and humidity, are less known.

The 2015 smoke haze episode was one of the most severe and prolonged transboundary air pollution events ever seen in Southeast Asia (SEA), affecting the air quality of several countries within the region including Indonesia, Malaysia and Singapore. The 24 h mean outdoor PM2.5 (particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm) concentrations ranged from 72–157 μg m−3 in Singapore during this episode, exceeding the WHO 24 h mean PM2.5 guidelines (25 μg m−3) several times over.

Heatwaves with large impacts have increased in the recent past and will continue to increase under future warming. However, the implication for population exposure to severe heatwaves remains unexplored. Here, we characterize maximum potential human exposure (without passive/active reduction measures) to severe heatwaves in India. We show that if the global mean temperature is limited to 2.0ºC above pre-industrial conditions, the frequency of severe heatwaves will rise by 30-times the current climate by the end -21st century.

Human activities, in particular agricultural production, interfere with natural cycles of nutrient elements, nitrogen (N) and phosphorus (P), leading to growing concerns about water quality degradation related to excessive nutrient loadings. Increases in agricultural production in response to population growth and wealth generation further increase risks associated with nutrient pollution. This paper presents results from projections of nutrient exports from global agricultural crop and pasture systems to the water environment generated using a process-based modeling approach.

While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing.

Unclean combustion of solid fuel for cooking and other household energy needs leads to severe household air pollution and adverse health impacts in adults and children. Replacing traditional solid fuel stoves with high efficiency, low-polluting semi-gasifier stoves can potentially contribute to addressing this global problem.

Universal access to electricity is deemed critical for improving living standards and indispensable for eradicating poverty and achieving sustainable development. In 2003, the 'Luz para Todos' (LpT—Light for All) program was launched aiming to universalize access to electricity in Brazil. The program focused on rural and isolated areas, also targeting to bring development to those regions along with electrification. This paper evaluates the results of the LpT program in improving socio-economic development in the poorest regions of Brazil.

This paper assesses whether ExxonMobil Corporation has in the past misled the general public about climate change. We present an empirical document-by-document textual content analysis and comparison of 187 climate change communications from ExxonMobil, including peer-reviewed and non-peer-reviewed publications, internal company documents, and paid, editorial-style advertisements ('advertorials') in The New York Times.

Typically 20–40 extreme cyclone events (sometimes called 'weather bombs') occur in the Arctic North Atlantic per winter season, with an increasing trend of 6 events/decade over 1979–2015, according to 6 hourly station data from Ny-Ålesund. This increased frequency of extreme cyclones is consistent with observed significant winter warming, indicating that the meridional heat and moisture transport they bring is a factor in rising temperatures in the region.

Historical changes in soil carbon associated with land-use change (LUC) result mainly from the changes in the quantity of litter inputs to the soil and the turnover of carbon in soils. We use a factor separation technique to assess how the input-driven and turnover-driven controls, as well as their synergies, have contributed to historical changes in soil carbon associated with LUC. We apply this approach to equilibrium simulations of present-day and pre-industrial land use performed using the dynamic global vegetation model JSBACH.

Pages