Changes in precipitation totals and extremes are among the most relevant consequences of climate change, but in particular regional changes remain uncertain. While aggregating over larger regions reduces the noise in time series and typically shows increases in the intensity of precipitation extremes, it has been argued that this may not be the case in water-limited regions.

Climate extremes, such as droughts or heat waves, can lead to harvest failures and threaten the livelihoods of agricultural producers and the food security of communities worldwide. Improving our understanding of their impacts on crop yields is crucial to enhance the resilience of the global food system.

Determining the time of emergence of climates altered from their natural state by anthropogenic influences can help inform the development of adaptation and mitigation strategies to climate change. Previous studies have examined the time of emergence of climate averages. However, at the global scale, the emergence of changes in extreme events, which have the greatest societal impacts, has not been investigated before.