Corporations and other multinational institutions are increasingly looking to evaluate their innovation and procurement decisions over a range of environmental criteria, including impacts on ecosystem services according to the spatial configuration of activities on the landscape. We have developed a spatially explicit approach and modeled a hypothetical corporate supply chain decision representing contrasting patterns of land-use change in four regions of the globe.

It has been argued that climate change is the biggest global health threat of the 21st century. The extreme high temperatures of the summer of 2003 were associated with up to seventy thousand excess deaths across Europe. Previous studies have attributed the meteorological event to the human influence on climate, or examined the role of heat waves on human health.

Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions. We compiled and analyzed high-resolution, spatially-explicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990–2006.

Water supply consumes a substantial amount of energy directly and indirectly. This study aims to provide an enhanced understanding of the influence of water stressors on the embodied energy of water supply (EEWS). To achieve this goal, the EEWS in 75 North Carolina counties was estimated through an economic input-output based hybrid life cycle assessment. Ten water stressor indicators related to population, economic development, climate, water source, and land use were obtained for the 75 counties.

The roles of forest and wetland ecosystems in regulating flooding have drawn increasing attention in the contexts of climate change adaptation and disaster risk reduction. However, data on floods are scarce in many of the countries where people are most exposed and vulnerable to their impacts.

Hydropower reservoirs are artificial water systems and comprise a small proportion of the Earth’s continental territory. However, they play an important role in the aquatic biogeochemistry and may affect the environment negatively. Since the 90s, as a result of research on organic matter decay in manmade flooded areas, some reports have associated greenhouse gas emissions with dam construction. Pioneering work carried out in the early period challenged the view that hydroelectric plants generate completely clean energy.

The effects of urban heat islands(UHIs) have a substantial bearing on the sustainability of cities and environs. This paper examines the efficacy of green and cool roofs as potential UHI mitigation strategies to make cities more resilient against UHI.

Original Source

Power plants constitute roughly 40% of carbon dioxide (CO2) emissions in the United States. Climate change science, air pollution regulation, and potential carbon trading policies rely on accurate, unbiased quantification of these large point sources. Two US federal agencies—the Department of Energy and the Environmental Protection Agency—tabulate the emissions from US power plants using two different methodological approaches. The researchers have analyzed those two data sets and have found that when averaged over all US facilities, the median percentage difference is less than 3%.

Widespread haze layers usually cover China like low clouds, exerting marked influence on air quality and regional climate. With recent Collection 6 MODIS Deep Blue aerosol data in 2000–2015, we analyzed the trends of regional haze pollution and the corresponding influence of atmospheric circulation in China.

Original Source

CO2 emissions from inland waters are commonly determined by indirect methods that are based on the product of a gas transfer coefficient and the concentration gradient at the air water interface (e.g., wind-based gas transfer models). The measurements of concentration gradient are typically collected during the day in fair weather throughout the course of a year. Direct measurements of eddy covariance CO2 fluxes from a large inland water body (Ross Barnett reservoir, Mississippi, USA) show that CO2 effluxes at night are approximately 70% greater than those during the day.