New research from the University of North Carolina at Chapel Hill and collaborators found that most marine life in marine protected areas will not be able to tolerate warming ocean temperatures

About eight million tonnes of plastic end up in the oceans each year and the global quantity will nearly double to 250 million tonnes by 2025, says a new analysis paper.

Deep water convection (DC) in winter is one of the major processes driving open-ocean primary productivity in the Northwestern Mediterranean Sea. DC is highly variable in time, depending on the specific conditions (stratification, circulation and ocean-atmosphere interactions) of each specific winter. This variability also drives the interannual oscillations of open-ocean primary productivity in this important region for many commercially-important fish species.

Significant salinity anomalies have been observed in the Arctic Ocean surface layer during the last decade. Our study is based on an extensive gridded dataset of winter salinity in the upper 50 m layer of the Arctic Ocean for the periods 1950–1993 and 2007–2012, obtained from ~20 000 profiles. We investigate the interannual variability of the salinity fields, identify predominant patterns of anomalous behavior and leading modes of variability, and develop a statistical model for the prediction of surface-layer salinity.

Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica.

Potential risks of supply shortages for critical metals including rare-earth elements and yttrium (REY) have spurred great interest in commercial mining of deep-sea mineral resources. Deep-sea mud containing over 5,000 ppm total REY content was discovered in the western North Pacific Ocean near Minamitorishima Island, Japan, in 2013. This REY-rich mud has great potential as a rare-earth metal resource because of the enormous amount available and its advantageous mineralogical features.

Using reanalysis datasets and numerical simulations, the relationship between the stratospheric Arctic vortex (SAV) and the Pacific decadal oscillation (PDO) on decadal time scales was investigated. A significant in-phase relationship between the PDO and SAV on decadal time scales during 1950–2014 is found, that is, the North Pacific sea surface temperature (SST) cooling (warming) associated with the positive (negative) PDO phases is closely related to the strengthening (weakening) of the SAV.

Ocean‐Waves‐Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso‐NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013–2014).

In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ1).

Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System (CFSv2) for summer monsoons of 2012–2014 in which two different OICs are utilized.