Long before humans started injecting carbon dioxide into the atmosphere by burning fossil fuels like oil, gas, and coal, the level of atmospheric CO2 rose significantly as the Earth came out of its

There are two main funding mechanisms to provide finance for projects in developing countries that will help fight climate change effects — the Global Environment Facility (GEF) and the Green Clima

Mineral exploitation has spread from land to shallow coastal waters and is now planned for the offshore, deep seabed. Large seafloor areas are being approved for exploration for seafloor mineral deposits, creating an urgent need for regional environmental management plans. Networks of areas where mining and mining impacts are prohibited are key elements of these plans.

The natural conservation of coastal lagoons is important not only for their ecological importance, but also because of the valuable ecosystem services they provide for human welfare and wellbeing. Coastal lagoons are shallow semi-enclosed systems that support important habitats such as wetlands, mangroves, salt-marshes and seagrass meadows, as well as a rich biodiversity.

The early part of the last deglaciation is characterised by a ~40 ppm atmospheric CO2 rise occurring in two abrupt phases. The underlying mechanisms driving these increases remain a subject of intense debate. Here, we successfully reproduce changes in CO2, δ13C and Δ14C as recorded by paleo-records during Heinrich stadial 1 (HS1). We show that HS1 CO2 increase can be explained by enhanced Southern Ocean upwelling of carbon-rich Pacific deep and intermediate waters, resulting from intensified Southern Ocean convection and Southern Hemisphere (SH) westerlies.

The Bjerknes compensation (BJC) under global warming is studied using a simple box model and a coupled Earth system model. The BJC states the out-of-phase changes in the meridional atmosphere and ocean heat transports. Results suggest that the BJC can occur during the transient period of global warming. During the transient period, the sea ice melting in the high latitudes can cause a significant weakening of the Atlantic meridional overturning circulation (AMOC), resulting in a cooling in the North Atlantic.

The existence of a chemosynthetic subseafloor biosphere was immediately recognized when deep-sea hot springs were discovered in 1977. However, quantifying how much new carbon is fixed in this environment has remained elusive. In this study, we incubated natural subseafloor communities under in situ pressure/temperature and measured their chemosynthetic growth efficiency and metabolic rates. Combining these data with fluid flux and in situ chemical measurements, we derived empirical constraints on chemosynthetic activity in the natural environment.

This report presents a range of alternative approaches and materials that have the potential for reducing our use of plastics for a range of common applications

Fifty per cent of the plastic we use is single-use or disposable. Each year, at least eight million tonnes of plastic end up in the oceans, the equivalent of a full garbage truck every minute.

New research from the University of North Carolina at Chapel Hill and collaborators found that most marine life in marine protected areas will not be able to tolerate warming ocean temperatures

Pages