The existence of a chemosynthetic subseafloor biosphere was immediately recognized when deep-sea hot springs were discovered in 1977. However, quantifying how much new carbon is fixed in this environment has remained elusive. In this study, we incubated natural subseafloor communities under in situ pressure/temperature and measured their chemosynthetic growth efficiency and metabolic rates. Combining these data with fluid flux and in situ chemical measurements, we derived empirical constraints on chemosynthetic activity in the natural environment.

Synthetic polymers are ubiquitous in the modern world but pose a global environmental problem. While plastics such as poly(ethylene terephthalate) (PET) are highly versatile, their resistance to natural degradation presents a serious, growing risk to fauna and flora, particularly in marine environments. Here, we have characterized the 3D structure of a newly discovered enzyme that can digest highly crystalline PET, the primary material used in the manufacture of single-use plastic beverage bottles, in some clothing, and in carpets.

Antibiotic use more than doubled in India between 2000 and 2015, fuelling antibiotic resistance that is making common infections such as E.coli, strep throat, pneumonia and tuberculosis more difficult to treat, according to this new study in the Proceedings of the National Academy of Sciences (PNAS)

Satellite altimetry has shown that global mean sea level has been rising at a rate of ∼3 ± 0.4 mm/y since 1993. Using the altimeter record coupled with careful consideration of interannual and decadal variability as well as potential instrument errors, we show that this rate is accelerating at 0.084 ± 0.025 mm/y2, which agrees well with climate model projections. If sea level continues to change at this rate and acceleration, sea-level rise by 2100 (∼65 cm) will be more than double the amount if the rate was constant at 3 mm/y.

We increasingly rely on global models to project impacts of humans and climate on water resources. How reliable are these models? While past model intercomparison projects focused on water fluxes, we provide here the first comprehensive comparison of land total water storage trends from seven global models to trends from Gravity Recovery and Climate Experiment (GRACE) satellites, which have been likened to giant weighing scales in the sky.

US agriculture was modeled to determine impacts of removing farmed animals on food supply adequacy and greenhouse gas (GHG) emissions. The modeled system without animals increased total food production (23%), altered foods available for domestic consumption, and decreased agricultural US GHGs (28%), but only reduced total US GHG by 2.6 percentage units. Compared with systems with animals, diets formulated for the US population in the plants-only systems had greater excess of dietary energy and resulted in a greater number of deficiencies in essential nutrients.

Conflicting sets of hypotheses highlight either the role of ice sheets or atmospheric carbon dioxide (CO2) in causing the increase in duration and severity of ice age cycles ∼1 Mya during the Mid-Pleistocene Transition (MPT). We document early MPT CO2 cycles that were smaller than during recent ice age cycles. Using model simulations, we attribute this to post-MPT increase in glacial-stage dustiness and its effect on Southern Ocean productivity.

Most nations recently agreed to hold global average temperature rise to well below 2 °C. We examine how much climate mitigation nature can contribute to this goal with a comprehensive analysis of “natural climate solutions” (NCS): 20 conservation, restoration, and/or improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We show that NCS can provide over one-third of the cost-effective climate mitigation needed between now and 2030 to stabilize warming to below 2 °C.

An estimated 4.5 billion people are currently exposed to particulate matter (PM) levels at least twice the concentration that the WHO considers safe. Existing evidence linking health to air pollution is largely based on populations exposed to only modest levels of PM and almost entirely composed of observational studies, which are likely to confound air pollution with other unobserved determinants of health.

Research of the past decades has shown that biodiversity promotes ecosystem functions including primary productivity. However, most studies focused on experimental communities at small spatial scales, and little is known about how these findings scale to nonexperimental, real-world ecosystems at large spatial scales, despite these systems providing essential ecosystem services to humans.

Pages