The mode and tempo of extinctions and extirpations after the first contact phase of human settlements is a widely debated topic. As the last major landmass to be settled by humans, New Zealand offers a unique lens through which to study interactions of people and biota. By analyzing ancient DNA from more than 5,000 nondiagnostic and fragmented bones from 38 subfossil assemblages, we describe species and patterns that have been missed by morphological approaches.

The present study documents the wood-boring trace fossil Asthenopodichnium from the Palaeocene sediments of the Barmer Hill Formation (BHF) in the Barmer Basin, Western Rajasthan, India. The Asthenopodichnium trace fossils are loosely to tightly packed, pouch-like burrows or almond-shaped structures identified as Asthenopodichnium lignorum, whereas lozenge and J-shaped structures are designated as Asthenopodichnium lithuanicum.

Original Source

Pterosaurs were winged cousins of the dinosaurs and lived from around 200 million years ago to 66 million years ago, when the last pterosaurs disappeared during the Cretaceous-Paleogene extinction that wiped out the dinosaurs. The pterosaurs are thought to have declined in diversity before their final extinction, suggesting that gradual processes played a major role in their demise. However, pterosaur fossils are very rare, and thus, it is unclear whether pterosaurs were really low in diversity at this time or whether these patterns merely result from a paucity of fossils.

The rainfall pattern in North East (NE) India shows a large variation both spatially and temporally5 . Due to this, severe flood occurs frequently in the region. Therefore, it is important to study the variability of pre-monsoon and summer monsoon showers of the region in the geological past. The quantitative palaeomonsoonal record from NE India is poor.

Original Source

Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces.

Hyoliths are abundant and globally distributed ‘shelly’ fossils that appear early in the Cambrian period and can be found throughout the 280 million year span of Palaeozoic strata. The ecological and evolutionary importance of this group has remained unresolved, largely because of their poorly constrained soft anatomy and idiosyncratic scleritome, which comprises an operculum, a conical shell and, in some taxa, a pair of lateral spines (helens).

Islands are ideal systems to model temporal changes in biodiversity and reveal the influence of humans on natural communities. Although theory predicts biodiversity on islands tends towards an equilibrium value, the recent extinction of large proportions of island biotas complicates testing this model. The well-preserved subfossil record of Caribbean bats—involving multiple insular radiations—provides a rare opportunity to model diversity dynamics in an insular community.

Fossilised leaves recovered from a crater lake in New Zealand provided insight on how climate changed and affected the Antarctic ice-sheet 23 million years ago, a scientist said on Thursday.

Stromatolite fossils formed around 3,700 million years ago in what is now Greenland predate the previous oldest fossil evidence for life on Earth by more than 200 million years.

The reported incidence of neoplasia in the extinct human lineage is rare, with only a few confirmed cases of Middle or Later Pleistocene dates reported. It has generally been assumed that pre-modern incidence of neoplastic disease of any kind is rare and limited to benign conditions, but new fossil evidence suggests otherwise. We here present the earliest identifiable case of malignant neoplastic disease from an early human ancestor dated to 1.8–1.6 million years old. The diagnosis has been made possible only by advances in 3D imaging methods as diagnostic aids.