Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces.

Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development.

Hyoliths are abundant and globally distributed ‘shelly’ fossils that appear early in the Cambrian period and can be found throughout the 280 million year span of Palaeozoic strata. The ecological and evolutionary importance of this group has remained unresolved, largely because of their poorly constrained soft anatomy and idiosyncratic scleritome, which comprises an operculum, a conical shell and, in some taxa, a pair of lateral spines (helens).

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence.

Stromatolite fossils formed around 3,700 million years ago in what is now Greenland predate the previous oldest fossil evidence for life on Earth by more than 200 million years.

Comparative phylogeography of African savannah mammals shows a congruent pattern in which populations in West/Central Africa are distinct from populations in East/Southern Africa. However, for the lion, all African populations are currently classified as a single subspecies (Panthera leo leo), while the only remaining population in Asia is considered to be distinct (Panthera leo persica). This distinction is disputed both by morphological and genetic data. In this study we introduce the lion as a model for African phylogeography.

The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7–9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly.

A high-resolution gene expression atlas of prenatal and postnatal brain development of rhesus monkey charts global transcriptional dynamics in relation to brain maturation, while comparative analysis reveals human-specific gene trajectories; candidate risk genes associated with human neurodevelopmental disorders tend to be co-expressed in disease-specific patterns in the developing monkey neocortex.

Remodelling of the human embryo at implantation is indispensable for successful pregnancy. Yet it has remained mysterious because of the experimental hurdles that beset the study of this developmental phase. Here, we establish an in vitro system to culture human embryos through implantation stages in the absence of maternal tissues and reveal the key events of early human morphogenesis.

Implantation of the blastocyst is a developmental milestone in mammalian embryonic development. At this time, a coordinated program of lineage diversification, cell-fate specification, and morphogenetic movements establishes the generation of extra-embryonic tissues and the embryo proper, and determines the conditions for successful pregnancy and gastrulation. Despite its basic and clinical importance, this process remains mysterious in humans. Here we report the use of a novel in vitro system to study the post-implantation development of the human embryo.

Pages