The Bjerknes compensation (BJC) under global warming is studied using a simple box model and a coupled Earth system model. The BJC states the out-of-phase changes in the meridional atmosphere and ocean heat transports. Results suggest that the BJC can occur during the transient period of global warming. During the transient period, the sea ice melting in the high latitudes can cause a significant weakening of the Atlantic meridional overturning circulation (AMOC), resulting in a cooling in the North Atlantic.

Future projections of precipitation at regional scales are vital to inform climate change adaptation activities. Therefore, is it important to quantify projected changes and associated uncertainty, and understand model processes responsible. This paper addresses these challenges for southern Africa and the adjacent Indian Ocean focusing on the local wet season. Precipitation projections for the end of the twenty-first century indicate a pronounced dipole pattern in the CMIP5 multimodel mean.

A growing network of ice cores reveals the past 800,000 years of Antarctic climate and atmospheric composition. The data show tight links among greenhouse gases, aerosols and global climate on many timescales, demonstrate connections between Antarctica and distant locations, and reveal the extraordinary differences between the composition of our present atmosphere and its natural range of variability as revealed in the ice core record.

As the Earth’s atmosphere warms, the atmospheric circulation changes. These changes vary by region and time of year, but there is evidence that anthropogenic warming causes a general weakening of summertime tropical circulation. Because tropical cyclones are carried along within their ambient environmental wind, there is a plausible a priori expectation that the translation speed of tropical cyclones has slowed with warming.

The Cretaceous greenhouse climate was accompanied by major changes in Earth’s hydrological cycle, but seasonally resolved hydroclimatic reconstructions for this anomalously warm period are rare. We measured the δ18O and CO2 clumped isotope Δ47 of the seasonal growth bands in carbonate shells of the mollusc Villorita cyprinoides (Black Clam) growing in the Cochin estuary, in southern India.

Original Source

A new comprehensive surface temperature data set for India is used to document changes in Indian temperature over seven decades, in order to examine the patterns and possible effects of global warming. The data set is subdivided into pre-monsoon, monsoon, and post-monsoon categories in order to study the temperature patterns in each of these periods.

Hypothesized drawdown of the East Antarctic Ice Sheet through the “bottleneck” zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted investigations of basal boundary controls on ice flow in this region until now.

An attribution study has been performed to investigate the degree to which the unusually cold European winter of 2009/10 was modified by anthropogenic climate change. Two different methods have been included for the attribution: one based on large HadGEM3-A ensembles and one based on a statistical surrogate method. Both methods are evaluated by comparing simulated winter temperature means, trends, standard deviations, skewness, return periods, and 5% quantiles with observations.

Wintertime windstorms associated with low-pressure systems from the North Atlantic Ocean are the costliest natural hazard for Europe. These storms are associated with large pressure gradients and high background winds, but the most destructive gusts are often confined to relatively small areas within the low-pressure systems.

Deep water convection (DC) in winter is one of the major processes driving open-ocean primary productivity in the Northwestern Mediterranean Sea. DC is highly variable in time, depending on the specific conditions (stratification, circulation and ocean-atmosphere interactions) of each specific winter. This variability also drives the interannual oscillations of open-ocean primary productivity in this important region for many commercially-important fish species.

Pages