Grounding lines are a key indicator of ice-sheet instability, because changes in their position reflect imbalance with the surround-ing ocean and affect the flow of inland ice. Although the grounding lines of several Antarctic glaciers have retreated rapidly due to ocean-driven melting, records are too scarce to assess the scale of the imbalance. Here, we combine satellite altimeter obser-vations of ice-elevation change and measurements of ice geometry to track grounding-line movement around the entire conti-nent, tripling the coverage of previous surveys.

Using reanalysis datasets and numerical simulations, the relationship between the stratospheric Arctic vortex (SAV) and the Pacific decadal oscillation (PDO) on decadal time scales was investigated. A significant in-phase relationship between the PDO and SAV on decadal time scales during 1950–2014 is found, that is, the North Pacific sea surface temperature (SST) cooling (warming) associated with the positive (negative) PDO phases is closely related to the strengthening (weakening) of the SAV.

The increasing awareness of the many damaging aspects of climate change has prompted research into ways of reducing and reversing the anthropogenic increase in carbon concentrations in the atmosphere. Most emission scenarios stabilizing climate at low levels, such as the 1.5 °C target as outlined by the Paris Agreement, require large-scale deployment of Bio-Energy with Carbon Capture and Storage (BECCS).

In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ1).

Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System (CFSv2) for summer monsoons of 2012–2014 in which two different OICs are utilized.

We examine the capability of thirteen Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) models in simulating climatology and interannual variability of Winter North Pacific Storm Track (WNPST). It is found that nearly half of the selected models can reproduce the spatial pattern of WNPST climatology. However, the strength and spatial variation of WNPST climatology are weak in most of the models.

Original Source

Satellite altimetry has shown that global mean sea level has been rising at a rate of ∼3 ± 0.4 mm/y since 1993. Using the altimeter record coupled with careful consideration of interannual and decadal variability as well as potential instrument errors, we show that this rate is accelerating at 0.084 ± 0.025 mm/y2, which agrees well with climate model projections. If sea level continues to change at this rate and acceleration, sea-level rise by 2100 (∼65 cm) will be more than double the amount if the rate was constant at 3 mm/y.

The Warm Arctic–cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results.

The majority of the five million people that live in the deltaic Indian Sundarbans face continuous uncertainties in relation to their shelter, livelihoods, and health. Climate change is one of the key factors aggravating this situation.

Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. Despite the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a time series of ice surface velocity from a network of eleven Global Positioning System receivers into an ice sheet model to estimate ice sheet stresses during winter, spring, and summer in a ∼30 × 10 km region.

Pages