An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with other online instruments to study the highly time resolved chemistry and sources of submicron aerosols (PM1) at Waliguan (WLG) Baseline Observatory, a high-altitude (3816 m a.s.l.) background station located at the northeast edge of the Qinghai–Tibet Plateau (QTP), during 1–31 July 2017.

Industries in north-eastern China have released large quantities of an ozone-depleting gas into the atmosphere in violation of an international treaty, scientists have said.

Aerosol pH is difficult to measure directly but can be calculated if the chemical composition is known with sufficient accuracy and precision to calculate the aerosol water content and the H+ concentration through ion balance. In practical terms, simultaneous measurements of at least one semi-volatile constitute, e.g.

The northern part of India, adjoining the Himalaya, is considered as one of the global hot spots of pollution because of various natural and anthropogenic factors.

Aerosol-cloud interactions remain a major uncertainty in climate research. Studies have indicated that model estimates of cloud susceptibility to aerosols frequently exceed satellite estimates, motivating model reformulations to increase agreement. Here we show that conventional ways of using satellite information to estimate susceptibility can serve as only a weak constraint on models because the estimation is sensitive to errors in the retrieval procedures.

Human activities have been implicated in the observed increase in Global Mean Surface Temperature. Over regional scales where climatic changes determine societal impacts and drive adaptation related decisions, detection and attribution (D&A) of climate change can be challenging due to the greater contribution of internal variability, greater uncertainty in regionally important forcings, greater errors in climate models, and larger observational uncertainty in many regions of the world.

A new comprehensive surface temperature data set for India is used to document changes in Indian temperature over seven decades, in order to examine the patterns and possible effects of global warming. The data set is subdivided into pre-monsoon, monsoon, and post-monsoon categories in order to study the temperature patterns in each of these periods.

Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively.

This study details the capabilities of the IITM Earth System Model version 2 (IITM‐ESMv2), developed at the Indian Institute of Tropical Meteorology, Pune, India, for investigating long‐term climate variability and change with special focus on the South Asian monsoon.

Original Source