A revised Community Multi-scale Air Quality (CMAQ) model with updated secondary organic aerosol (SOA) yields and a more detailed description of SOA formation from isoprene oxidation was applied to study the spatial and temporal distribution of SOA in China in the entire year of 2013. Predicted organic carbon (OC), elemental carbon and volatile organic compounds agreed favorably with observations at several urban areas, although the high OC concentrations in wintertime in Beijing were under-predicted.

Understanding the sources and evolution of aerosols is crucial for constraining the impacts that aerosols have on a global scale. An unanswered question in atmospheric science is the source and evolution of the Antarctic aerosol population.

Original Source

The electric field and Maxwell current density measured below 32 small isolated thunderstorms over Pune (India) have been analyzed here. These data clearly show the presence of 10 out of 32 thunderstorms with inverted polarity charge structure. Values of Aerosol Optical Depth (AOD) on thunderstorm days taken from MODIS show that all the thunderstorms with inverted polarity occurred on days with significantly higher AOD compared to normal polarity thunderstorms. The peak flash rate did not show significant difference between normal polarity thunderstorms and inverted polarity thunderstorms.

Chinese coastal waters support vast fisheries and vital economies, but their productivity is threatened by increasingly frequent harmful algal blooms (HABs). Here we provide direct experimental evidence that atmospheric deposition, along with riverine input, opens new niches for bloom-forming dinoflagellates and diatoms in the East China Sea (ECS) by increasing the ratio of nitrogen to phosphorus (N:P), inducing severe P limitation, and altering trace metal micronutrient inventories.

Exceedingly high levels of fine particulate matter (PM) occur frequently in China, but the mechanism of severe haze formation remains unclear. From atmospheric measurements in two Chinese megacities and laboratory experiments, we show that the oxidation of SO2 by NO2 occurs efficiently in aqueous media under two polluted conditions: first, during the formation of the 1952 London Fog via in-cloud oxidation; and second, on fine PM with NH3 neutralization during severe haze in China.

The recent dust storm in the Middle East (Sepember 2015) was publicized in the media as a sign of an impending 'Dust Bowl.' Its severity, demonstrated by extreme aerosol optical depth in the atmosphere in the 99th percentile compared to historical data, was attributed to the ongoing regional conflict.

Anthropogenic aerosols are a key factor governing Earth’s climate, and play a central role in human-caused climate change. However, because of aerosols’ complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide.

Legionella pneumophila is, by far, the species most frequently associated with Legionnaires’ disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization.

Much of the influence on climate from air pollution in East Asia is driven by consumption in the developed countries of Western Europe and North America, according to research co-led by McGill Univ

The ability of seven state-of-the-art chemistry–aerosol models to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over eastern Asia in summer 2008, is evaluated. The study focuses on the performance of models used to assess impacts of pollutants on climate and air quality as part of the EU ECLIPSE project. Models, run using the same ECLIPSE emissions, are compared over different spatial scales to in situ surface, vertical profiles and satellite data.

Pages