Desert dust over the Indian region during pre-monsoon season is known to strengthen monsoon circulation, by modulating rainfall through the elevated heat pump (EHP) mechanism. In this context, an insight into long term trends of dust loading over this region is of signifcant importance in understanding monsoon variability.

Residential solid biomass cookstoves are important sources of aerosol emissions in India. Cookstove emissions rates are largely based on laboratory experiments conducted using the standard water-boiling test, but real-world emissions are often higher owing to different stove designs, fuels, and cooking methods. Constraining mass emissions factors (EFs) for prevalent cookstoves is important because they serve as inputs to bottom-up emissions inventories used to evaluate health and climate impacts.

The 2015 smoke haze episode was one of the most severe and prolonged transboundary air pollution events ever seen in Southeast Asia (SEA), affecting the air quality of several countries within the region including Indonesia, Malaysia and Singapore. The 24 h mean outdoor PM2.5 (particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm) concentrations ranged from 72–157 μg m−3 in Singapore during this episode, exceeding the WHO 24 h mean PM2.5 guidelines (25 μg m−3) several times over.

Air pollution is a major risk factor for global health, with 3 million deaths annually being attributed to fine particulate matter ambient pollution (PM2.5). The primary source of information for estimating population exposures to air pollution has been measurements from ground monitoring networks but, although coverage is increasing, regions remain in which monitoring is limited. The data integration model for air quality supplements ground monitoring data with information from other sources, such as satellite retrievals of aerosol optical depth and chemical transport models.

As is true in many regions, India experiences surface Urban Heat Island (UHI) effect that is well understood, but the causes of the more recently discovered Urban Cool Island (UCI) effect remain poorly constrained. This raises questions about our fundamental understanding of the drivers of rural-urban environmental gradients and hinders development of effective strategies for mitigation and adaptation to projected heat stress increases in rapidly urbanizing India. Here we show that more than 60% of Indian urban areas are observed to experience a day-time UCI.

Exposure to fine particles is measured using metrics such as mass concentration (MC), number concentration (NC) and surface area concentration (SAC). This study aims to find correlation between the three metrics in outdoor environments of a city – city periphery, city centre and on-road. Simultaneous real-time mass, number and surface area concentration measurements were conducted in these environments. Arithmetic means, peak concentration values, and regression coefficients were determined to find relation between the three metrics.

While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing.

We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework, referred as the “super-parameterization” (SP) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in SP are the one-moment cloud microphysics without aerosol treatment (SP1) and two-moment cloud microphysics coupled with aerosol treatment (SP2).

Black carbon (BC) and organic carbon (OC) aerosols are important components of fine particulate matter (PM2.5) in polluted urban environments. Quantifying the contribution of fossil fuel and biomass combustion to BC and OC concentrations is critical for developing and validating effective air quality control measures and climate change mitigation policy. We used radiocarbon (14C) to measure fossil and contemporary biomass contributions to BC and OC at three locations in Salt Lake City, Utah, USA during 2012-2014, including during winter inversion events.

The use of biomass for heat and power production is supported in many IEA countries since biomass as a renewable fuel can effectively substitute fossil fuels and consequently reduce fossil CO2. During biomass combustion, inhalable particulate matter smaller than 10 micrometres (PM10) can be generated which can cause adverse health impacts.