This study details the capabilities of the IITM Earth System Model version 2 (IITM‐ESMv2), developed at the Indian Institute of Tropical Meteorology, Pune, India, for investigating long‐term climate variability and change with special focus on the South Asian monsoon.

Original Source

Aerosol Optical Thickness (AOT) is a measure of solar spectral extinction. Long term AOT data analysis gives a picture of air quality for that location. This type of analysis is useful in the study of impact of urbanization on local climate. Aerosols are one of the most important but poorly understood factors that influence global climate change (IPCC, 2001). This calls for a need to regularly monitor the global aerosol distributions and study how they are changing over time.

A very unusual dust plume generated from dust-storm activities over the Arabian Peninsula and Southwest Asia affected the north-west region of India between March 20 and 23, 2012, causing significant reductions in air quality and consequently changes in meteorological parameters. Ground based measurements of aerosol optical depth at 500 nm reached 1.015 ± 0.24 and 0.837 ± 0.042 at Jodhpur while Angstrom exponent dropped to -0.030 and -0.065 on March 20 and 21, 2012 respectively. The AOD reached 0.959 in Delhi while Angstrom exponent dropped to 0.006 on March 21, 2012.

Since at least the 1980s, many farmers in northwest India have switched to mechanized combine harvesting to boost efficiency. This harvesting technique leaves abundant crop residue on the fields, which farmers typically burn to prepare their fields for subsequent planting. A key question is to what extent the large quantity of smoke emitted by these fires contributes to the already severe pollution in Delhi and across other parts of the heavily populated Indo-Gangetic Plain located downwind of the fires.

Aerosols play an important role in climate change processes. Among the various aerosols, black carbon (BC) has been recognized as the second most important anthropogenic agent for climate change and the primary tracer for adverse health effects caused by air pollution. The increasing concentration of BC in the atmosphere has now become a matter of serious concern, especially in the high Himalayan glaciated region that has the most vulnerable ecosystem with pristine environment, rich biodiversity and pollution-free ambient air quality.

Albedo—a primary control on surface melt—varies considerably across the Greenland Ice Sheet yet the specific surface types that comprise its dark zone remain unquantified. Here we use UAV imagery to attribute seven distinct surface types to observed albedo along a 25 km transect dissecting the western, ablating sector of the ice sheet. Our results demonstrate that distributed surface impurities—an admixture of dust, black carbon and pigmented algae—explain 73% of the observed spatial variability in albedo and are responsible for the dark zone itself.

A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities.

Given the importance of aerosol particles to radiative transfer via aerosol-radiation interactions, a methodology for tracking and diagnosing causes of temporal changes in regional-scale aerosol populations is illustrated. The aerosol optical properties tracked include estimates of total columnar burden (aerosol optical depth, AOD), dominant size mode (Ångström exponent, AE), and relative magnitude of radiation scattering versus absorption (single scattering albedo, SSA), along with metrics of the structure of the spatial feld of these properties.

The El Niño/Southern Oscillation (ENSO) has a pronounced influence on year-to-year variations in climate1. The response of fires to this forcing2 is complex and has not been evaluated systematically across different continents. Here we use satellite data to create a climatology of burned-area and fire-emissions responses, drawing on six El Niño and six La Niña events during 1997–2016.


Aerosols are significant to the Earth’s climate, with nearly all atmospheric aerosols containing organic compounds that often contain both hydrophilic and hydrophobic parts. However, the nature of how these compounds are arranged within an aerosol droplet remains unknown. Here we demonstrate that fatty acids in proxies for atmospheric aerosols self-assemble into highly ordered three-dimensional nanostructures that may have implications for environmentally important processes.