Cool materials with higher solar reflectance compared with conventional materials of the same color are widely used to maintain cooler urban fabrics when exposed to solar irradiation and to mitigate the Urban Heat Island (UHI). Photo-catalytic coatings are also useful to reduce air pollutants. Many studies related to these topics have been carried out during the past few years, although the lighting implication of reflective coatings have hardly been explored.

As urban overheating is increasing, there is a strong public interest towards mitigation strategies to enhance comfortable urban spaces, for their role in supporting urban metabolism and social life. The study presents an assessment of the existing thermal comfort and usage of San Silvestro Square in Rome during the summer, and performs the simulation of cooling strategies scenarios, to understand their mitigation potential for renovation projects.

The ozone layer - which protects us from harmful ultraviolet radiation - is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes

Clouds’ efficiency at reflecting solar radiation and trapping the terrestrial radiation is strongly modulated by the diurnal cycle of clouds (DCC). Much attention has been paid to mean cloud properties due to their critical role in climate projections; however, less research has been devoted to the DCC. Here we quantify the mean, amplitude, and phase of the DCC in climate models and compare them with satellite observations and reanalysis data.

Original Source

Models show that several aspects of Earth’s top-of-atmosphere energy budget and the magnitude of projected global warming are correlated, enabling us to infer that future warming has been underestimated.

The urban heat island effect (UHI) for inner land regions was investigated using satellite data, ground observations, and simulations with an Single-Layer Urban Canopy Parameterization (SLUCP) coupled into the regional Weather Research Forecasting model (WRF, http://wrf-model.org/index.php). Specifically, using the satellite-observed surface skin temperatures (Tskin), the intensity of the UHI was first compared for two inland cities (Xi’an City, China, and Oklahoma City (OKC)), which have different city populations and building densities.

The evolution of Earth’s climate on geological timescales is largely driven by variations in the magnitude of total solar irradiance (TSI) and changes in the greenhouse gas content of the atmosphere. Here we show that the slow ∼50 Wm−2 increase in TSI over the last ∼420 million years (an increase of ∼9 Wm−2 of radiative forcing) was almost completely negated by a long-term decline in atmospheric CO2. This was likely due to the silicate weathering-negative feedback and the expansion of land plants that together ensured Earth’s long-term habitability.

Annual and seasonal variability and trends in low cloud cover over India were analyzed for the period 1961-2010. Taking all period into account, there is a general decrease in mean low cloud cover over most regions of India, but an increase in the Indo-Gangetic plains and northeast India. Long term mean low cloud cover over India has inter-annual variations with highest cloud cover (39.4%) in monsoon and lowest cloud cover (10.5%) in winter season.

Since its inception Google has been serving mankind - right from the simplest things to the most complex tasks of finding facts and details of specific subjects.

A simultaneous analysis of 13 years of remotely sensed data of land cover, fires, precipitation, and aerosols from the MODIS, TRMM, and MISR satellites and the AERONET network over Southeast Asia is performed, leading to a set of robust relationships between land-use change and fire being found on inter-annual and intra-annual scales over Southeast Asia, reflecting the heavy amounts of anthropogenic influence over land-use change and fires in this region of the world.

Pages