The urban heat island effect (UHI) for inner land regions was investigated using satellite data, ground observations, and simulations with an Single-Layer Urban Canopy Parameterization (SLUCP) coupled into the regional Weather Research Forecasting model (WRF, http://wrf-model.org/index.php). Specifically, using the satellite-observed surface skin temperatures (Tskin), the intensity of the UHI was first compared for two inland cities (Xi’an City, China, and Oklahoma City (OKC)), which have different city populations and building densities.

Predicting the impact of climate change and human activities on river systems is imperative for effective management of aquatic ecosystems. Unique information can be derived that is critical to the survival of aquatic species under dynamic environmental conditions. Therefore, the response of a tropical river system under climate and land-use changes from the aspects of water temperature and dissolved oxygen concentration were evaluated.

Northern Thailand has been experiencing the impact of climate change due to its fragile agro-ecosystem, inhabited by a resource-poor population. The study, conducted in a mountainous landscape of Doi Mae Salong area in Northern Thailand, explores the farmers’ perceptions of climate change, its impact on farming, and adaptation measures undertaken by the two ethnic communities in the area for coping with climate change impacts. The data were collected through a structured questionnaire survey of ninety farm households using the recall approach for the past twenty years.

There is evidence that access to green spaces have positive effects on health, possibly through beneficial effects on exercise, air quality, urban heat islands, and stress. Few previous studies have examined the associations between green space and mortality, and they have given inconsistent results. This ecological study relates green space to mortality in Hong Kong from 2006 to 2011. The Normalized Difference Vegetation Index (NDVI), a measure of green space coverage, was measured for 199 small geographic areas in Hong Kong.

The goal of this work is to assess climate change and its impact on the predictability of seasonal (i.e., April–July) streamflow in major water supply watersheds in the Sierra Nevada.

Original Source

This paper assessed the effect of projected climate change on the grain yield of barley in fourteen administrative regions in the United Kingdom (UK). Climate data for the 2030s, 2040s and 2050s for the high emission scenario (HES), medium emissions scenario (MES) and low emissions scenario (LES) were obtained from the UK Climate Projections 2009 (UKCP09) using the Weather Generator. Simulations were performed using the AquaCrop model and statistics of simulated future yields and baseline yields were compared.

Climate change will have large impacts on water resources and its predictions are fraught with uncertainties in West Africa. With the current global drive for renewable energy due to climate change, there is a need for understanding the effects of hydro-climatic changes on water resources and hydropower generation. A hydrological model was used to model runoff inflow into the largest hydroelectric dam (Kainji) in the Niger Basin (West Africa) under present and future conditions.

Farmers in China’s tea-growing regions report that monsoon dynamics and other weather factors are changing and that this is affecting tea harvest decisions. To assess the effect of climate change on tea production in China, this study uses historical weather and production data from 1980 to 2011 to construct a yield response model that estimates the partial effect of weather factors on tea yields in China, with a specific focus on East Asian Monsoon dynamics.

Original Source

Infrastructure such as dams and reservoirs are critical water-supply features in several regions of the world. However, ongoing population growth, increased demand and climate variability/change necessitate the better understanding of these systems, particularly in terms of their long-term trends. The Sooke Reservoir (SR) of British Columbia, Canada is one such reservoir that currently supplies water to ~300,000 people, and is subject to considerable inter and intra-annual climatic variations.

Landslides, floods, and droughts are recurring natural disasters in Nepal related to too much or too little water. The summer monsoon contributes more than 80% of annual rainfall, and rainfall spatial and inter-annual variation is very high. The Gandaki River, one of the three major rivers of Nepal and one of the major tributaries of the Ganges River, covers all agro-ecological zones in the central part of Nepal.

Pages