Over the past few decades, substantial funding has been directed toward improving scientific understanding and management of impacts of climate change in the marine environment. Following concerns that the key messages from these studies were not reaching the public, a comprehensive opinion poll of 10,000 European citizens in 10 countries was conducted to establish levels of awareness, concern, and trust among different demographic groups (by age, gender, proximity to the coast) and nationalities. Citizens exhibited varying levels of self-declared “informedness” and concern.

A large fraction of the organic carbon derived from land that is transported through inland waters is decomposed along river systems and emitted to the atmosphere as carbon dioxide (CO2). The Amazon River outgasses nearly as much CO2 as the rainforest sequesters on an annual basis, representing ~25% of global CO2 emissions from inland waters. However, current estimates of CO2 outgassing from the Amazon basin are based on a conservative upscaling of measurements made in the central Amazon, meaning both basin and global scale budgets are likely underestimated.

A thorough understanding of movement patterns of a species is critical for designing effective conservation and management initiatives. However, generating such information for large marine vertebrates is challenging, as they typically move over long distances, live in concealing environments, are logistically difficult to capture and, as upper-trophic predators, are naturally low in abundance. Large-bodied, broadly distributed tropical shark typically restricted to coastal and shelf habitats, the great hammerhead shark Sphyrna mokarran epitomizes such challenges.

Chinese coastal waters support vast fisheries and vital economies, but their productivity is threatened by increasingly frequent harmful algal blooms (HABs). Here we provide direct experimental evidence that atmospheric deposition, along with riverine input, opens new niches for bloom-forming dinoflagellates and diatoms in the East China Sea (ECS) by increasing the ratio of nitrogen to phosphorus (N:P), inducing severe P limitation, and altering trace metal micronutrient inventories.

Despite the rapid increase in the use of unmanned aerial vehicles (UAVs) in marine mammal research, knowledge of the effects of UAVs on study animals is very limited. We recorded the in-air and in-water noise from two commonly used multi-rotor UAVs, the SwellPro Splashdrone and the DJI Inspire 1 Pro, to assess the potential for negative noise effects of UAV use. The Splashdrone and Inspire UAVs produced broad-band in-air source levels of 80 dB re 20 μPa and 81 dB re 20 μPa (rms), with fundamental frequencies centered at 60 Hz and 150 Hz.

Ocean ecosystems play a critical role in the Earth's carbon cycle and the quantification of their impacts for both present conditions and for predictions into the future remains one of the greatest challenges in oceanography. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) Science Plan is to develop a predictive understanding of the export and fate of global ocean net primary production (NPP) and its implications for present and future climates.

Ocean acidification (OA) and hypoxic events are an increasing worldwide problem, but the synergetic effects of these factors are seldom explored. However, this synergetic occurrence of stressors is prevalent. The coastline of Chile not only suffers from coastal hypoxia but the cold, oxygen-poor waters in upwelling events are also supersaturated in CO2, a study site to explore the combined effect of OA and hypoxia.

Warming occurs particularly fast in the Arctic and exerts profound effects on arctic ecosystems. Sea ice-associated ecosystems are projected to decline but reduced arctic sea ice cover also increases the solar radiation reaching the coastal seafloors with the potential for expansion of vegetated habitats, i.e. kelp forests and seagrass meadows. These habitats support key ecosystem functions, some of which may mitigate effects of climate change.