Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development
Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development1, 2, 3; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4)6 exhibit an inversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels.