Over the past 40 years, two of the dominant reef-building corals in the Caribbean, Acropora palmata and Acropora cervicornis, have experienced unprecedented declines. That loss has been largely attributed to a syndrome commonly referred to as white-band disease. Climate change-driven increases in sea surface temperature (SST) have been linked to several coral diseases, yet, despite decades of research, the attribution of white-band disease to climate change remains unknown. Here we hindcasted the potential relationship between recent ocean warming and outbreaks of white-band disease on acroporid corals. We quantified eight SST metrics, including rates of change in SST and contemporary thermal anomalies, and compared them with records of white-band disease on A. palmata and A. cervicornis from 473 sites across the Caribbean, surveyed from 1997 to 2004. The results of our models suggest that decades-long climate-driven changes in SST, increases in thermal minima, and the breach of thermal maxima have all played significant roles in the spread of white-band disease. We conclude that white-band disease has been strongly coupled with thermal stresses associated with climate change, which has contributed to the regional decline of these once-dominant reef-building corals.

Attachment(s):