Additional image:: 

Instrumental observations suggest that Lake Tanganyika, the largest rift lake in East Africa, has become warmer, increasingly stratified and less productive over the past 90 years. These trends have been attributed to anthropogenic climate change. However, it remains unclear whether the decrease in productivity is linked to the temperature rise3,4 , and whether the twentieth-century trends are anomalous within the context
of longer-term variability. Here, we use the TEX86 temperature proxy, the weight per cent of biogenic silica and charcoal abundance from Lake Tanganyika sediment cores to reconstruct lake-surface temperature, productivity and regional wildfire frequency, respectively, for the past 1,500 years.

Attachment(s):