Chickpea (Cicer arietinum L.) is the world’s second most important pulse crop after common bean. Chickpea has historically been an important daily staple in the diet of millions of people, especially in the developing countries. Current chickpea breeding programs have mainly been directed toward high yield, biotic and abiotic stress resilience that has increased global production, but less attention has been directed toward improving micronutrient concentrations in seeds. In an effort to develop micronutrient-dense chickpea lines, a study to examine the variability and to identify SNP alleles associated with seed iron and zinc concentrations was conducted using 94 diverse accessions of chickpea. The results indicated that there is substantial variability present in chickpea germplasm for seed iron and zinc concentrations. In the current set of germplasm, zinc is negatively correlated with grain yield across all locations and years; whereas the negative correlation between iron and grain yield was only significant at the Elrose locality. Eight SNP loci associated with iron and (or) zinc concentrations in chickpea seeds were identified. One SNP located on chromosome 1 (chr1) is associated with both iron and zinc concentrations. On chr4, three SNPs associated with zinc concentration and two SNPs for iron concentration were identified. Two additional SNP loci, one on chr6 and the other on chr7, were also found to be associated with iron and zinc concentrations, respectively. The results show potential opportunity for molecular breeding for improvement of seed iron and zinc concentrations in chickpea.

Attachment(s):