Ecological studies identifying a positive relationship between biodiversity and ecosystem services motivate projections that higher plant diversity will increase services from agroecosystems. While this idea is compelling, evidence of generalizable relationships between biodiversity and ecosystem services that could be broadly applied in agricultural systems is lacking. Cover crops grown in rotation with cash crops are a realistic strategy to increase agroecosystem diversity.

The ongoing changes to climate challenge the conservation of forest biodiversity. Yet, in thermally limited systems, such as temperate forests, not all species groups might be affected negatively. Furthermore, simultaneous changes in the disturbance regime have the potential to mitigate climate-related impacts on forest species.

The potential for infectious pathogens to spillover and emerge from managed populations to wildlife communities is poorly understood, but ecological, evolutionary and anthropogenic factors are all likely to influence the initial exposure and subsequent infection, spread and impact of disease. Fast-evolving RNA viruses, known to cause severe colony losses in managed honeybee populations, deserve particular attention for their propensity to jump between host species and thus threaten ecologically and economically important wild pollinator communities.

Neonicotinoids are the most widely used insecticides world-wide, but their fate in the environment remains unclear, as does their potential to influence non-target species and the roles they play in agroecosystems. The researchers investigated in laboratory and field studies the influence of the neonicotinoid thiamethoxam, applied as a coating to soya bean seeds, on interactions among soya beans, non target molluscan herbivores and their insect predators.