Dehydration effects from contrails in a coupled contrail–climate model
Dehydration effects from contrails in a coupled contrail–climate model
Uptake of water by contrails in ice-supersaturated air and release of water after ice particle advection and sedimentation dehydrates the atmosphere at flight levels and redistributes humidity mainly to lower levels. The dehydration is investigated by coupling a plume-scale contrail model with a global aerosol–climate model. The contrail model simulates all the individual contrails forming from global air traffic for meteorological conditions as defined by the climate model. The computed contrail-cirrus properties compare reasonably with theoretical concepts and observations. The mass of water in aged contrails may exceed 106 times the mass of water emitted from aircraft. Many of the ice particles sediment and release water in the troposphere, on average 700 m below the mean flight levels.