Many studies have reported associations between ozone pollution and morbidity and 18 mortality, but few studies focus on the health and economic effects at China's regional level. This 19 study evaluates the ozone pollution-related health impacts on China's national and provincial 20 economy and compares them with the impacts from PM2.5.

Original Source

We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1) in the model, in which tropical fires account for 66–84 % of global particulate emissions from fire. The model underestimates PM2.5 concentrations where observations are available over South America and AOD over South America, Africa and Southeast Asia.

Global dimming refers to the decrease in surface solar radiation (SSR) observed from the 1960s to the 1980s at different measurement sites all around the world. It is under debate whether anthropogenic aerosols emitted from urban areas close to the measurement sites are mainly responsible for the dimming. In order to assess this urbanization impact on SSR, we use spatially explicit population density data of 0.08° resolution to construct population indices (PI) at 157 high data quality sites.

The Kathmandu Valley in South Asia is considered as one of the global "hot spots" in terms of urban air pollution. It is facing severe air quality problems as a result of rapid urbanization and land use change, socioeconomic transformation and high population growth.

Original Source

Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis.

A yearlong near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia) and rural (Look Rock, Tennessee) site in the southeastern US using the Aerodyne aerosol chemical speciation monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region.

Uptake of water by contrails in ice-supersaturated air and release of water after ice particle advection and sedimentation dehydrates the atmosphere at flight levels and redistributes humidity mainly to lower levels. The dehydration is investigated by coupling a plume-scale contrail model with a global aerosol–climate model. The contrail model simulates all the individual contrails forming from global air traffic for meteorological conditions as defined by the climate model. The computed contrail-cirrus properties compare reasonably with theoretical concepts and observations.

Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India.

This paper presents a summary of the work done within the European Union’s Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality
Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for 5 designing a realistic and effective mitigation scenario for short-lived climate pollutants