Research of the past decades has shown that biodiversity promotes ecosystem functions including primary productivity. However, most studies focused on experimental communities at small spatial scales, and little is known about how these findings scale to nonexperimental, real-world ecosystems at large spatial scales, despite these systems providing essential ecosystem services to humans.

In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant–soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect.