Rectification of surface chlorophyll (Chl) concentration by the atmospheric intraseasonal variability is detected in a numerical biophysical ocean model when it is forced by composite Madden-Julian Oscillation (MJO) events. In addition to the shoaled mixed layer depth (MLD) previously reported, it is found that increased mean Chl by MJO forcing mostly co-occurs with shoaled isothermal depth (ITD) / nutrient isopleths and reduced barrier layer thickness (BLT).

Recent studies indicate that the rates of sea level rise (SLR) along the U.S. mid-Atlantic coast have accelerated in recent decades, possibly due to a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) and its upper branch, the Gulf Stream (GS). We analyzed the GS elevation gradient obtained from altimeter data, the Florida Current transport obtained from cable measurements, the North Atlantic Oscillation (NAO) index, and coastal sea level obtained from 10 tide gauge stations in the Chesapeake Bay and the mid-Atlantic coast.