Maize is grown by millions of smallholder farmers in South Asia (SA) under diverse environments. The crop is grown in different seasons in a year with varying exposure to weather extremes, including high temperatures at critical growth stages which are expected to increase with climate change. This study assesses the impact of current and future heat stress on maize and the benefit of heat-tolerant varieties in SA. Annual mean maximum temperatures may increase by 1.4–1.8 °C in 2030 and 2.1–2.6 °C in 2050, with large monthly, seasonal, and spatial variations across SA.

The Tibetan Plateau (TP) has become a focus of strong scientific interest due to its role in the global water cycle and its reaction to climate change. Regional flux estimates of sensible and latent heat are important variables for linking the energy and hydrological cycles at the TP’s surface. Within this framework, a 3-year dataset (2008–2010) of eddy covariance measured turbulent fluxes was compiled from four stations on the TP into a standardised workflow: corrections and quality tests were applied using an internationally comparable software package.

Madden–Julian oscillation plays an important role in the formation of extreme rainfall events over the Meghalaya Hills during extreme monsoon years says this research paper by Paweł Prokop, Adam Walanus published in Theoretical and Applied Climatology.